To remove stones, bushes, trees from the right-of-way of the future road it is advisable to use machines with bulldozer equipment. Theoretical basis for excavation has been considered in detail, however, based on it, it is difficult to identify and compare the partial energy costs of the impact on the ground by the elements of equipment. Without knowing the value of partial energy consumption during the operation of each element of the work tool, it is impossible to improve it in a reasonable way. The purpose of the proposed theoretical study is a detailed analysis of the interaction of the soil and the knife of the bulldozer blade for the subsequent improvement of bulldozer equipment. The object of the study is the process of interaction between the soil and the knife. In the proposed scheme, soil cutting is carried out with micro-shiftings. Depending on soil properties and machine velocity, deformations of pseudodisplacement, volume compression, crumpling will predominate in the soil. To determine the force required for crumpling, compression and pseudodisplacement of the soil in a sloping surface, we use the conditional generalized limit of soil crumpling strength. After determining, the force required for pseudo-displacement the soil in a sloping surface, we identify the energy consumption for the initial crumpling and pseudo-displacement of one cubic meter of soil. Then we determine the primary shear strength of the soil by edge of the bulldozer knife and the corresponding energy consumption; calculate the total energy costs and power to move the bulldozer knife. Based on the developed methodology, has been determined the energy consumption for primary crumpling and pseudo-displacement of one cubic meter of soil, for shifting the soil in the longitudinalvertical plane by the knife edge, the total energy consumption, power to move the knife of the bulldozer blade at different depths. The corresponding functions are constructed and approximated. Calculation of energy consumption for moving the bulldozer knife will allow to determine the total energy consumption in order to upgrade the bulldozer equipment for reducing the costs in the future.