Improving the public transport monitoring system using machine learning methods
https://doi.org/10.31660/2782-232X-2025-3-83-93
EDN: ELECUE
Abstract
This study focuses on developing software to address a practically important problem: providing public oversight of urban transport movement. This is particularly crucial in areas with limited GPS/GLONASS and cellular connectivity. The core of the system comprises video cameras located along the route and a computer vision system. This system detects the presence of buses or trolleybuses in the camera’s field of view, localizes them, and recognizes their route numbers. Using the freely available YOLOv11s object detector, a machine recognition accuracy of 96 % was achieved. This version of YOLO is resource-efficient, enabling the use of a standard personal computer to process multiple video streams. Route numbers were recognized using the open-source PaddleOCR library, achieving an accuracy of 82 %. The obtained results were compared with the bus schedule, and the data was posted via a Telegram bot. The research results aim to improve the convenience of urban public transport, reduce social tension, and provide residents and dispatching services with real-time information about deviations in urban transport operations.
About the Authors
A. V. ZatonskiyRussian Federation
Andrey V. Zatonskiy, Dr. Sci. (Engineering), Professor, Head of the Department of Automation of Technological Processes
Berezniki, 7 Telmana St., 618404
V. V. Danilov
Russian Federation
Vsevolod V. Danilov, Graduate Student in the Department of Information Technology and Automated Systems
Perm, 29 Komsomolsky Prospekt, 614990
References
1. Andreev K. P., Terentiev V. V. Modern problems of urban passenger transport. Science Almanac. 2016;(11-2):19– 21. (In Russ.) URL: https://elibrary.ru/item.asp?edn=xigdxv
2. Andreyev K. P., Terent'yev V. V., Temnov E. S. Problems with the quality of public transport services. In: Problemy issledovaniya sistem i sredstv avtomobil'nogo transporta: materialy Mezhdunarodnoy ochno-zaochnoy nauchnotekhnicheskoy konferentsii, Tula, Nevember 23–24, 2017. Tula: Tula State University, 2017. P. 105–110. (In Russ.) URL: https://elibrary.ru/item.asp?id=32512428
3. Rakhmatullina A. R. Problems of development of city public transport. Upravleniye ekonomicheskimi sistemami. 2013;(12):70. (In Russ.) URL: https://econpapers.repec.org/article/scn007255/15547324.htm
4. Spevakov B. S. Innovative methods of urban transport management: experiences from global megacities. In: Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya molodykh uchenykh BGTU im. V. G. Shukhova, posvyashchennaya 170-letiyu so dnya rozhdeniya V. G. Shukhova, Belgorod, May 16–17, 2023. Belgorod: Belgorod State Technological University named after V. G. Shukhov; 2023. P. 947–952. (In Russ.) URL: https://elibrary.ru/item.asp?id=54616552&pff=1
5. Minnikhanov R. N. An integrated system of monitoring and control of traffic flows. Science & Engineering for Roads. 2017;(1):13–15. (In Russ.) URL: https://lib.madi.ru/nitdo/index.html
6. Mishina E. S., Lebed R. K., Khmelev R. N. On the question of equipment of urban public transportation systems for monitoring and ensuring transportation security. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskiye nauki. 2020;(10):326–332. (In Russ.) URL: https://elibrary.ru/item.asp?id=44298662
7. Sirota A., Mitrofanova E. Yu., Milovanova A. I. Analysis of algorithms for searching objects in images using various modifications of convolutional neural networka. Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies. 2019;(3):123–137. (In Russ.) https://doi.org/10.17308/sait.2019.3/1313
8. Wu J., Fan P., Sun Y., Gui W. Ghost-RetinaNet: Fast Shadow Detection Method for Photovoltaic Panels Based on Improved RetinaNet. Computer Modeling in Engineering & Sciences. 2023;134(2):1305–1321. https://doi.org/10.32604/cmes.2022.020919
9. He L.-h., Zhou Y.-z., Liu L., Cao W., Ma J.-h. Research on object detection and recognition in remote sensing images based on YOLOv11. Scientific Reports. 2025;15:14032. https://doi.org/10.1038/s41598-025-96314-x
10. Andriyanov N. A., Andriyanov D. A. The importance of data augmentation in machine learning for image processing tasks in the face of data scarcity. In: Informatsionnyye tekhnologii i nanotekhnologii (ITNT-2020): materialy VI Mezhdunarodnoy konferentsii i molodezhnoy shkoly, Samara, May 26–29, 2020. Samara: Samara National Research University named after Academician S. P. Korolev, 2020. Vol. 2. P. 383–388. URL: https://repo.ssau.ru/handle/Informacionnye-tehnologii-i-nanotehnologii/O-vazhnosti-augmentacii-dannyh-primashinnom-obuchenii-v-zadachah-obrabotki-izobrazhenii-v-usloviyah-deficita-dannyh-85287
11. Maratuly A., Abibullayev Y. A. Performance study and comparative analysis of YOLO-NAS and previous versions of YOLO. International journal of information and communication technologies. 2024;5(17):71–83 (In Russ.). https://doi.org/10.54309/IJICT.2024.17.1.006
12. Pujara A., Bhamare M. DeepSORT: Real Time & Multi-Object Detection and Tracking with YOLO and TensorFlow. In: International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2022. P. 456–460. https://doi.org/10.1109/ICAISS55157.2022.10011018
13. Besshaposhnikov N. O., Kuzmenko M. A., Leonov A. G., Matyushin M. A. Automation of data markup for neural networks. Proceedings in Cybernetics. 2018;(4):204–210. (In Russ.)
14. Burdukovskiy S. O. An analytical review of LABELIMG image labeling software. In: Prioritetnyye napravleniya innovatsionnoy deyatel'nosti v promyshlennosti: materialy III mezhdunarodnoy nauchnoy konferentsii, Kazan, March 30–31, 2021. Moscow: OOO "Konvert", 2021. P. 156–157. (In Russ.) URL: https://elibrary.ru/item.asp?id=45746462
15. Sarkar O., Sinha S., Jena A. K., Parida A. K., Parida N., Parida R. K. Automatic number plate character recognition using paddle-OCR. In: International Conference on Innovations and Challenges in Emerging Technologies (ICICET), Nagpur, India, 2024. P. 1–7. https://doi.org/10.1109/ICICET59348.2024.10616305
16. Reddy P. P., Shruthi P. S., Himanshu P., Singh T. License plate detection using YOLO v8 and performance evaluation of easyOCR, paddleOCR and tesseract. In: 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024. P. 1–6. http://dx.doi.org/10.1109/icccnt61001.2024.10725878
Review
For citations:
Zatonskiy A.V., Danilov V.V. Improving the public transport monitoring system using machine learning methods. Architecture, Construction, Transport. 2025;5(3):83-93. (In Russ.) https://doi.org/10.31660/2782-232X-2025-3-83-93. EDN: ELECUE