Synergy of additive technologies, bionics and fractal approach in bridge engineering
https://doi.org/10.31660/2782-232X-2024-4-98-106
Abstract
Modern bridge construction demands efficient designs, technologies, and materials. Traditional methods tend towards simpler designs, whereas modern approaches enable a wider variety of structures and architectural forms. This research explores successful examples of 3D printing, bionics and fractal approaches in bridge engineering, and analyzes the potential of combining these technologies for optimal results in modern bridge construction.
Keywords
About the Authors
I. G. OvchinnikovRussian Federation
Igor G. Ovchinnikov, Dr. Sci. (Engineering), Professor, Professor in the Basic Department of JSC "Mostostroy-11"
Tyumen
I. O. Razov
Russian Federation
Igor O. Razov, Cand. Sci. (Engineering), Associate Professor, Associate Professor in the Basic Department of JSC "Mostostroy-11"
Tyumen
N. B. Kudaibergenov
Kazakhstan
Nurlan B. Kudaibergenov, Dr. Sci. (Engineering), Professor, Professor in the Department of Construction
Astana
References
1. Temnov V. G. Structural systems in nature and construction technology. Leningrad: Stroyizdat; 1987. (In Russ.) Available at: https://m.eruditor.one/file/1323456/.
2. Kovyryagin M. A., Ovchinnikov I. G. Controlled structures (in bridge construction). Saratov: Saratov State Technical University; 2003. (In Russ.)
3. Ovchinnikov I. G., Karakhanyan A. B. Applying a bionic approach to the design of pedestrian bridges. In: Modernization and Scientific Research in the Transport Complex: International Scientific and Practical Conference, Perm, April 23-24, 2015. Perm: Perm National Research Polytechnic University; 2015. P. 430–436. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=23646394.
4. Ovchinnikov I. G., Ovchinnikov I. I., Karakhanyan A. B. Pedestrian Bridges: modern trends design. Part 1. Using the bionic approach. Naukovedenie. 2015;7(2):81TVN215. (In Russ.) Available at: http://naukovedenie.ru/PDF/81TVN215.pdf.
5. Ovchinnikov I. I., Karakhanyan A. B., Ovchinnikov I. G., Skachkov Yu. P. Modern pedestrian and bicycle bridges (basic design concepts and examples). Penza: Penza State University of Architecture and Construction; 2018. (In Russ.)
6. Aldersey-Williams H. Towards biomimetic architecture. Nature Materials. 2004;3:277–279. https://doi.org/10.1038/nmat1119
7. Bonser R. H. C. Patented Biologically-inspired technological innovations: A twenty year view. Journal of Bionic Engineering. 2006;3(1):39–41. https://doi.org/10.1016/S1672-6529(06)60005-X
8. Vincent J. F. V., Bogatyreva O. A., Bogatyrev N. R., Bowyer A., Pahl A.-K. Biomimetics: its practice and theory. Journal of The Royal Society Interface. 2006;3(9):471–482. https://doi.org/10.1098/rsif.2006.0127
9. Mak T.W., Shu L.H. Using descriptions of biological phenomena for idea generation. Research in Engineering Design. 2008;19:21–28. https://doi.org/10.1007/s00163-007-0041-y
10. Bhushan B. Biomimetics: lessons from nature-an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2009;367(1893):1445–1486. https://doi.org/10.1098/rsta.2009.0011
11. Helms M., Vattam S. S., Goel A. K. Biologically inspired design: process and products. Design Studies. 2009;30(5):606– 622. https://doi.org/10.1016/J.DESTUD.2009.04.003
12. Liu K, Jiang L. Bio-inspired design of multiscale structures for function integration. Nano Today. 2011;6(2):155–175. https://doi.org/10.1016/j.nantod.2011.02.002
13. Santulli C., Langella C. Introducing students to bio-inspiration and biomimetic design: a workshop experience. International Journal of Technology and Design Education. 2011;21:471–485. https://doi.org/10.1007/s10798-010-9132-6
14. Shu L. H., Ueda K., Chiu I., Cheong H. Biologically inspired design. CIRP Annals - Manufacturing Technology. 2011;60(2):673–693. https://doi.org/10.1016/j.cirp.2011.06.001
15. Chen P.-Y., McKittrick J., Meyers M. A. Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science. 2012;57(8):1492–1704. https://doi.org/10.1016/j.pmatsci.2012.03.00
16. Knippers J., Speck T. Design and construction principles in nature and architecture. Bioinspiration & Biomimetics. 2012;7(1):015002. https://doi.org/10.1088/1748-3182/7/1/015002
17. Bar-Cohen Y. Nature as a model for mimicking and inspiration of new technologies. International Journal of Aeronautical and Space Sciences. 2012;13(1):1–13. https://doi.org/10.5139/IJASS.2012.13.1.1
18. Maglic Michael J. Biomimicry: Using Nature as a Model for Design. Masters Theses. 2012. P. 871. https://doi.org/10.7275/2820720
19. Murugan R., Wang X., Chen G., Guoping Ch., Peter M., Fu-Zhai C. (eds.) Biomimetics: Advancing nanobiomaterials and tissue engineering. Salem: Scrivener Publishing; 2013. Available at: http://ndl.ethernet.edu.et/bitstream/123456789/4133/1/21.pdf.
20. Benyus J. Biomimicry: Innovation inspired by nature. New York: William Morrow & Co.; 1997. https://doi.org/10.1002/inst.12116
21. Ovchinnikov I. G., Ovchinnikov I. I. Sustainable bridge design in Russia. In: Railway Transport and Technologies (RTT2021), Ekaterinburg, November 24–25 2021. USA: Aip Publishing; 2023. P. 030021. https://doi.org/10.1063/5.0133764
22. Freitas Salgueiredo C. Modeling biological inspiration for innovative design. i3 Conference 2013, October 15 2013. P. 1–17. Available at: https://i3.cnrs.fr/wp-content/uploads/2016/05/Freitas__conferenceI32013.pdf.
23. Olason A., Tidman, D. Methodology for topology and shape optimisation in the design process. Masters Thesis in the Master’s programme Solid and Fluid Mechanics. Goteborg: Chalmers University of Technology; 2011. Available at: https://publications.lib.chalmers.se/records/fulltext/130136.pdf.
24. Maltseva T. V., Trefilina E. R. Modeling of the two-phase body with account of carrying abilities of the fuild phase. Mathematical Models and Computer Simulations. 2004;16(11):845–852. (In Russ.) Available at: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=mm&paperid=222&option_lang=rus.
25. Borovkov A. I., Burdakov S. F., Klyavin O. I., Melnikova M. P., Mikhailova A. A., Nemov A. S. et al. Computer Engineering. St. Petersburg: St. Petersburg and Peter the Great St. Petersburg Polytechnic University; 2012. (In Russ.)
26. Melnikov R., Zazulya Ju., Stepanov M., Ashikhmin O., Maltseva T. OCR and POP parameters in Plaxis-based numerical analysis of loaded over consolidated soils. Procedia Engineering. 2016;165:845–852. https://doi.org/10.1016/j.proeng.2016.11.783
27. Rayneau-Kirkhope D, Maoa Y., Farr R., Segal J. Hierarchical space frames for high mechanical efficiency: Fabrication and mechanical testing. Mechanics Research Communications. 2012;46:41–46. http://dx.doi.org/10.1016/j.mechrescom.2012.06.011
Review
For citations:
Ovchinnikov I.G., Razov I.O., Kudaibergenov N.B. Synergy of additive technologies, bionics and fractal approach in bridge engineering. Architecture, Construction, Transport. 2024;(4):98-106. (In Russ.) https://doi.org/10.31660/2782-232X-2024-4-98-106