Development of a monitoring system for parking spaces
https://doi.org/10.31660/2782-232X-2023-1-58-66
Abstract
The article discusses the organization of automatic control of free parking spaces using artificial intelligence technology. Identification of a car in the parking lot occurs by processing video signals from autonomous video modules by a trained neural network. Independence and autonomy of video modules transmitting information to a common computing center ensures the independence of the system from the transport infrastructure of the parking space. End users can track information about parking occupancy within the mobile application.
About the Authors
A. A. OsipenkoRussian Federation
Artem A. Osipenko, Graduate Student, the Member of Project Team SMARTm-22-1
Department of Automobile Transport, Construction and Road Machines
Tyumen
K. F. Manankov
Russian Federation
Kirill F. Manankov, Graduate Student, the Member of Project Team SMARTm-22-1
Department of Automobile Transport, Construction and Road Machines
Tyumen
A. M. Osipenko
Russian Federation
Alexey M. Osipenko, Leading Specialist
Center for the Internet of Things and Smart City
Tyumen
T. A. Nikolenko
Russian Federation
Tatyana A. Nikolenko, Candidate of Engineering, Associate Professor
Department of Automobile Transport, Construction and Road Machines
Tyumen
O. F. Danilov
Russian Federation
Oleg F. Danilov, Doctor of Engineering, Professor, Head of the Department
Department of Automobile Transport, Construction and Road Machines
Tyumen
References
1. Foster, D. (2019). Generative deep learning: teaching machines to paint, write, compose, and play. Beijing, Boston, Farnham, Sebastopol, Tokyo, Publ. O'Reilly Media, 330 p. (In English).
2. Glushakov, S. V., & Lomot'ko, D. V. (2002). Bazy dannykh. Khar'kov, Folio Publ., Moscow, AST Publ., 504 p. (In Russian).
3. Vendeleva, M. A., & Vertakova, Yu. V. (2012). Informatsionnye tekhnologii upravleniya. Moscow, Yurayt Publ., 462 p. (In Russian).
4. Gagarina, L. G., Fedorov, A. R., & Fedorov, P. A. (2016). Vvedenie v arkhitekturu programmnogo obespecheniya. Moscow, Forum, Infra-M Publ., 319 p. (In Russian).
5. Belov, V. V., & Chistyakova, V. I. (2018). Proektirovanie informatsionnykh sistem. Moscow, Kurs Publ., 394 p. (In Russian).
6. Vendrov, A. M. (1998). Case-tekhnologii. Sovremennye metody i sredstva proektirovaniya informatsionnykh sistem. Moscow, Finansy i statistika Publ., 175 p. (In Russian).
7. PostgreSQL: About. PostgreSQL: The World's Most Advanced Open Source Relational Database. (In English). Available at: https://www.postgresql.org/about (accessed 12. 06. 2022).
8. Microsoft SQL Server. Wikipedia. (In Russian). Available at: https://ru.wikipedia.org/wiki/Microsoft_SQL_Server (accessed 05. 06. 2022).
9. Groff, J. Weinberg, P., & Oppel, A. (2009). SQL. The Complete Reference. 3<sup>rd</sup> edition. New York, Chicago, San Francisco, Lisbon, London, Madrid, Mexico City, Milan, New Delhi, San Juan, Seoul, Singapore, Sydney, Toronto, Publ. McGraw-Hill, 912 p. (In English).
10. Gutgarts, R. D. (2019). Proektirovanie avtomatizirovannykh sistem obrabotki informatsii i upravleniya. Moscow, Yurayt Publ., 462 p. (In Russian).
11. Kolisnichenko, D. N. (2013). PHP i MySQL. Razrabotka Web-prilozheniy. 4<sup>th</sup> edition. Saint Petersburg, BKhV-Peterburg Publ., 560 p. (In Russian).
12. Sychev, A. V. (2020). Web-tekhnologii. 3<sup>rd</sup> edition. Moscow, Saratov, INTUIT, Ay Pi Ar Media Publ., 407 p. (In Russian).
Review
For citations:
Osipenko A.A., Manankov K.F., Osipenko A.M., Nikolenko T.A., Danilov O.F. Development of a monitoring system for parking spaces. Architecture, Construction, Transport. 2023;(1):58-66. (In Russ.) https://doi.org/10.31660/2782-232X-2023-1-58-66