Preview

Architecture, Construction, Transport

Advanced search

Application of computer modeling methods in the design of snow protection systems

https://doi.org/10.31660/2782-232X-2022-3-46-55

Abstract

The article discusses the use of numerical modeling methods of snow-wind flow transfer processes to determine the locations of snow protection constructions. The numerical algorithm also includes computer processing of meteorological data and a digital model of topography. Based on this approach, an analysis of the placement of snowretaining fences along a section of snow-covered road was made.

About the Authors

S. A. Filimonov
Siberian Federal University; Krasnoyarsk branch of Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Sergey A. Filimonov, Candidate of Engineering, Researcher at the Krasnoyarsk branch

Krasnoyarsk



K. Yu. Litvintsev
Krasnoyarsk branch of Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Kirill Yu. Litvintsev, Candidate of Physics and Mathematics, Researcher

Krasnoyarsk



A. A. Dekterev
Siberian Federal University; Krasnoyarsk branch of Kutateladze Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Aleksandr A. Dekterev, Candidate of Engineering, Head of the Krasnoyarsk branch

Krasnoyarsk



A. V. Minakov
Siberian Federal University
Russian Federation

Andrey V. Minakov, Doctor of Physics and Mathematics, Director of the Institute of Engineering Physics and Radioelectronics

Krasnoyarsk



V. D. Meshkova
Siberian Federal University
Russian Federation

Victoria D. Meshkova, Postgraduate Student

Krasnoyarsk



R. A. Sharafutdinov
Siberian Federal University
Russian Federation

Ruslan A. Sharafutdinov, Candidate of Geography, Director of the Institute of Ecology and Geography

Krasnoyarsk



Yu. N. Zaharinskiy
Siberian Federal University
Russian Federation

Yuri N. Zaharinskiy, Candidate of Economics, Senior Researcher

Krasnoyarsk



References

1. Byalobzheskiy, G. V., Dyunin, A. K., Plaksa, L. N., Rudakov, L. M., & Utkin, B. V. (1983). Zimnee soderzhanie avtomobil'nykh dorog. 2nd edition, revised. In A. K. Dyunin (ed.). Moscow, Transport Publ., 197 p. (In Russian).

2. Filimonov, S. A., Dekterev, A. A., Gavrilov, A. A., Litvintsev, K. Yu., Shebelev, S. V., & Meshkova, V. D. (2021). The influence of landscape and urban development on modeling of transport of pollutants in Krasnoyarsk city. Journal of Physics: Conference Series, p. 012134. (In English). DOI 10.1088/1742-6596/2057/1/012134.

3. Volkov, E. P., Zaichik, L. I., & Pershukov, V. A. (1994). Modelirovanie goreniya tverdogo topliva. Мoscow, Nauka Publ., 320 p. (In Russian).

4. Zaichik, L. I., Drobyshevsky, N. I. Filippov, A. S., Mukin, R. V., & Strizhov, V. F. (2010). A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows. International Journal of Heat and Mass Transfer, 53(1-3), pp. 154-162. DOI 10.1016/j.ijheatmasstransfer.2009.09.044.

5. Gavrilov, A. A., & Shebelev, A. V. (2018). Single-fluid model of a mixture for laminar flows of highly concentrated suspensions. Fluid Dynamics, 53(2), pp. 255-269. (In English). DOI 10.1134/S0015462818020064.

6. Marsh, C. B., Pomeroy, J. W., Wheater, H. S., & Spiteri, R. J. (2020). A finite volume blowing snow model for use with variable resolution meshes. Water Resources Research, 56(2). (In English). DOI 10.1029/2019WR025307.

7. Ferziger, J. H., & Peric, M. (2002). Computational methods for fluid dynamics. 3rd edition, revised. Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Tokyo, Publ. Springer, 423 p. (In English).

8. Patankar, S. (1980). Numerical heat transfer and fluid flow. Boca Raton, Publ. CRC Press, 214 p. (In English). DOI 10.1201/9781482234213.

9. Menter, F. (1993). Zonal two equation k-ω turbulence models for aerodynamic flows. 24th Fluid Dynamics Conference. (In English). DOI 10.2514/6.1993-2906.

10. Dekterev, A. A., Gavrilov, A. A., & Minakov, A. V. (2010). New features of SIGMAFLOW code for thermophysics problem solving. Sovremennaya nauka: issledovaniya, idei, rezul'taty, tekhnologii, (4(2)), pp. 117-122. (In Russian).

11. Dekterev, A. A., Litvintsev, K. Yu., Gavrilov, A. A., Kharlamova, E. B., & Filimonov, S. A. (2017). Free Software Package SIGMA_FW for Numerical Simulation of Hydrodynamics and Heat Transfer. Journal of Siberian Federal University. Engineering & Technologies, 10(4), pp. 534-542. (In Russian).

12. Meshkova, V. D., Dekterev, A. A., Gavrilov, A. A., & Litvintsev, K. Yu. (2020). SigmaFlow CFD code as a tool for predicting the wind environment around a group of buildings. Journal of Physics: Conference Series, p. 012119. (In English). DOI 10.1088/1742-6596/1675/1/012119.

13. Tabler, R. D. (2003). Controlling blowing and drifting snow with snow fences and road design. Final Report. Niwot, Colorado, 345 p. (In English).


Review

For citations:


Filimonov S.A., Litvintsev K.Yu., Dekterev A.A., Minakov A.V., Meshkova V.D., Sharafutdinov R.A., Zaharinskiy Yu.N. Application of computer modeling methods in the design of snow protection systems. Architecture, Construction, Transport. 2022;(3):46-55. (In Russ.) https://doi.org/10.31660/2782-232X-2022-3-46-55

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)