Preview

Architecture, Construction, Transport

Advanced search

Construction and verification of the adequacy of the regression equation of the bending tensile strength from the ratio of composite material components

https://doi.org/10.31660/2782-232X-2022-2-30-38

Abstract

Nowadays, most of the materials used in the construction industry are composites. This is why it is necessary to select their optimal composition, which can be done using the mathematical planning of the experiment. In order to determine the most appropriate composition of the composite material based on gypsum binder with the addition of sawdust according to the criterion of the bending tensile strength, mathematical planning of the experiment was performed. The press was used to measure the bending tensile strength. The regression equation has been also obtained, the response surface has been constructed and the adequacy check of the obtained regression coefficients has been performed.

About the Authors

A. V. Erofeev
Tambov State Technical University
Russian Federation

Aleksandr V. Erofeev, Candidate of Engineering, Associate Professor at the Department of Structures of Buildings and Constructions

Tambov



A. A. Morkovin
Tambov State Technical University
Russian Federation

Alexander A. Morkovin, Student at the Department of Structures of Buildings and Constructions

Tambov



T. I. Gorokhov
Tambov State Technical University
Russian Federation

Timofei I. Gorokhov, Postgraduate at the Department of Structures of Buildings and Constructions

Tambov



References

1. Makarichev, Yu. A., & Ivannikov, Yu. N. (2016). M 30 Metody planirovanie eksperimenta i obrabotki dannykh. Samara, Samara State Technical University Publ., 131 p. (In Russian).

2. Kuznetsova, E. V. (2011). E413 Matematicheskoe planirovanie eksperimenta. Perm, Permskiy gosudarstvennyy tekhnicheskiy universitet Publ., 35 p. (In Russian).

3. Vlasov, O. E. (1961). Stroitel'naya teplofizika. Sostoyanie i perspektivy razvitiya. Moscow, Gosstroyizdat Publ., 290 p. (In Russian).

4. Gorchakov, G. I., Lifanov, I. I., Bagautdinov, A. A., & Akhmedov, S. S. (1992). Prognozirovanie teploprovodnosti kompozitsionnykh materialov razlichnogo stroeniya. Stroitel`nye Materialy, (4), pp. 27-29. (In Russian).

5. Sokolovskaya, I. Yu. (2010). Polnyy faktornyy eksperiment. Novosibirsk, Novosibirskaya gosudarstvennaya akademiya vodnogo transporta Publ., 36 p. (In Russian).

6. Izmeritel' teploprovodnosti ITP-MG4. Rukovodstvo po ekspluatatsii E 12.102.010 RE. Аpproved: 04.03.2011. (In Russian). Available at: http://www.stroypribor.com/netcat_files/316/175/manual_itp. pdf (accessed 23.03.2022).

7. Gubskaya, A. G., Lebedeva, O. N., Melen'ko, V. S., & Uretskaya, E. A. (2009). Gips i materialy na ego osnove. Minsk, Strinko Publ., 184 p. (In Russian).

8. Budnikov, P. P. (1943). Gips, ego issledovanie i primenenie. Moscow, Stroyizdat Narkomstroya Publ., 378 p. (In Russian).

9. Oborudovanie dlya kontrolya kachestva dorozhno-stroitel'nykh rabot. Autolabkomplekt. (In Russian). Available at: https://xn--80aadcr3abddjreo8al.xn--p1ai/ (accessed 05.04.2022).

10. Razumaeva, V. I. (eds.). (1957). Mekhanizm tverdeniya vyazhushchikh i gipsovye materialy. Sbornik trudov. Vypusk 1. Moscow, Promstroyizdat Publ., 136 p. (In Russian).


Review

For citations:


Erofeev A.V., Morkovin A.A., Gorokhov T.I. Construction and verification of the adequacy of the regression equation of the bending tensile strength from the ratio of composite material components. Architecture, Construction, Transport. 2022;(2):30-38. (In Russ.) https://doi.org/10.31660/2782-232X-2022-2-30-38

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)