The relevance of revising reference manuals on hydraulic calculation of worn-out engineering networks of urban infrastructure
https://doi.org/10.31660/2782-232X-2023-4-64-70
Abstract
When designing and reconstructing engineering networks of urban infrastructure, design organizations use a set of classical formulas for hydraulic calculation of pipelines. They don’t take into account changes in hydraulic potential during operation, and it leads to significant errors. This justifies the need to develop and refine reference manuals for hydraulic calculation of worn-out metal water supply, sewerage and heating networks of urban infrastructure. A specific example graphically demonstrates the influence of the thickness of the layer of internal deposits on the accuracy of the hydraulic calculation of pipes, i.e. on the determination of the parameters of their hydraulic potential. Based on the proposed methods of hydraulic calculation of pipes, we proved the relevance of revise the special reference manuals with taking into account actual changes in the values of hydraulic characteristics of metal pipelines in the process of their operation, in particular, the value of the coefficient of hydraulic efficiency of the pipeline.
About the Authors
O. А. ProdousRussian Federation
Oleg A. Prodous, D. Sc. in Engineering, Professor
D. I. Shlychkov
Russian Federation
Dmitry I. Shlychkov, Cand. Sc. in Engineering, Associate Professor at the Department of Water Supply and Water Disposal
A. A. Shestakov
Russian Federation
Alexander A. Shestakov, Postgraduate at the Department of Water Supply and Water Disposal
A. G. Chelonenko
Russian Federation
Andrey G. Chelonenko, Graduate Student at the Department of Water Supply and Water Disposal
References
1. Prodous, O. A., Yakubchik, P. P., & Shlychkov, D. I. (2023). Osobennosti gidravlicheskogo rascheta vodoprovodov iz metallicheskikh, polimernykh i metallopolimernykh trub. Terminologicheskiy slovar' po naruzhnym setyam vodosnabzheniya i kanalizatsii. Moscow, "Pero" Publ., 288 p. (In Russian).
2. Prodous, O. A., Shlychkov, D. I., Jakubchik, P. P., & Parkhomenko, S. V. (2022). Influence of the thickness of the layer of internal deposits in pipelines of water supply and discharge systems on their remaining service life. Vestnik MGSU [Monthly Journal on Construction and Architecture], 17(6), pp. 738-746. (In Russian). DOI 10.22227/19970935.2022.6.738-746.
3. Prodous, O. A., & Shlychkov, D. I. (2022). Gidravlicheskiy raschet setey vodootvedeniya s vnutrennimi otlozheniyami. Moscow, National Research Moscow State University of Civil Engineering, 120 p. (In Russian).
4. Song, Y. H, Yun, R, Lee, E. H, & Lee, J. H. (2018). Predicting sedimentation in urban sewer conduits. Water, 10(4):462. (In English). DOI 10.3390/w10040462.
5. Lange, R. L., & Wichern, M. (2013). Sedimentation dynamics in combined sewer systems. Water Sci Technol, 68(4):756-62. (In English). DOI 10.2166/wst.2013.278.
6. Banasiak, R. (2008). Hydraulic performance of sewer pipes with deposited sediments. Water Sci Technol, 57(11):1743-8. (In English). DOI 10.2166/wst.2008.287.
7. Shevelev, F. A. (1953). Issledovanie osnovnykh gidravlicheskikh zakonomernostey turbulentnogo dvizheniya v trubakh. Moscow, Gosstroyizdat Publ., 207 p. (In Russian).
8. Reyzin, B. L. (1979). Korroziya i zashchita kommunal'nykh vodoprovodov. Moscow, Stroyizdat Publ., 308 p. (In Russian).
9. Shevelev, F. A., & Shevelev, A. F. (2020). Tablitsy dlya gidravlicheskogo rascheta vodoprovodnykh trub. Spravochnoe posobie. Moscow, Izdatel'skiy dom "Bastet", 428 p. (In Russian).
10. Fominykh, A. V., Telminov, A. V., & Kovshova, N. A. (2018). The dependence of the coefficient of friction losses along the length of the pipe in hydraulic systems of the agro-industrial complex. Vestnik Kurganskoy GSKhA, (3(27)), pp. 79-82. (In Russian).
11. Novikov, S. V. (2007). Perspektivy primeneniya stal'nykh trub s polimernym pokrytiem v sistemakh ZhKKh. Territoriya Neftegaz, (11), pp. 28-31. (In Russian).
12. Prodous, O. A., Shipilov, A. A., Yakubchik, P. P. (2021). Tablitsy dlya gidravlicheskogo rascheta vodoprovodnykh trub iz stali i serogo chuguna s vnutrennimi otlozheniyami. Spravochnoe posobie. Moscow, Izdatel'stvo "Pero", 238 p. (In Russian).
13. Schwermer, C. U., & Uhl, W. (2021). Calculating expected effects of treatment effectivity and river flow rates on the contribution of WWTP effluent to the ARG load of a receiving river. Journal of Environmental Management, (288), P. 112445. (In English). DOI 10.1016/j.jenvman.2021.112445.
14. Braga, A. S., & Filion, Y. (2021). A novel monitoring scheme to detect iron oxide particle deposits on the internal surface of PVC drinking water pipes. Environmental Science: Water Research & Technology, 7(11), pp. 2116-2128. (In English). DOI 10.1039/D1EW00614B.
15. Orlov, V. A., Chrenov, K. E., & Bogomolova, I. O. (2014). The restorationof the dilapidated pipelines using compressed plastic pipes. Vestnik MGSU [Monthly Journal on Construction and Architecture], (2), pp. 105-113. (In Russian).
16. Khar'kin, V. A. (2003). Razrabotka sistemnogo podkhoda i optimizatsiya ekspluatatsii beznapornykh vodootvodyashchikh setey. Diss. dokt. tekhn. nauk. Moscow, 197 p. (In Russian).
Review
For citations:
Prodous O.А., Shlychkov D.I., Shestakov A.A., Chelonenko A.G. The relevance of revising reference manuals on hydraulic calculation of worn-out engineering networks of urban infrastructure. Architecture, Construction, Transport. 2023;(4):64-70. (In Russ.) https://doi.org/10.31660/2782-232X-2023-4-64-70