Preview

Architecture, Construction, Transport

Advanced search

Freestanding foundation with stepped base. Results of a full-scale experiment

https://doi.org/10.31660/2782-232X-2023-4-17-25

Abstract

Despite the large number of existing solutions, the issue of optimizing the structure of freestanding shallow foundations is still relevant because of poorly studying. The object of the study is foundations with stepped base. To confirm the efficiency of these foundations, we conducted three different experiments: digital modelling, laboratory tests and full-scale experiment. First, the foundations were compared in terms of absolute settlement. In each of the experiments, the foundation with a stepped base was more efficient than its flat-base analogue (by about 30 %). During the full-scale experiment, at a final pressure under the foundation base of 18 t/m2, the foundation with flat base settled by 70.67 mm, while the foundation with stepped base settled by 49.32 mm. The experiment confirmed the results of the previous experiments: the foundation with a stepped base showed a substantially smaller settlement than the flat base analogue. In future studies, we plan to investigate the operation of strip foundations with stepped base in more detail, to determine the internal forces appearing in the body of the foundations, and to define the need of reinforcement for foundations with stepped base.

About the Author

V. S. Safaryan
Industrial University of Tyumen; LLC "Stroitel"
Russian Federation

Vage S. Safaryan, Postgraduate at the Department of Construction Production, Assistant at the Department of Building Structures; Chief Project Engineer



References

1. Alekseev, S. I. (2019). Mekhanika gruntov. Osnovaniya i fundamenty. Moscow, Assotsiatsiya stroitel'nykh vuzov Publ., 180 p. (In Russian).

2. Bespalova, M. V. (2021). Mekhanika gruntov v zadachakh i primerakh. Gomel, Belarusian State University of Transport Publ., 63 p. (In Russian).

3. Kravchenko, P. A., Paramonov, V. N., & Kuvaldina, O. S. (2017). Mekhanika gruntov, osnovaniya i fundamenty. SaintPetersburg : Emperor Alexander I St. Petersburg State Transport University Publ., 36 p. (In Russian).

4. Baj, V. F., & Safaryan, V. S. (2022). Improving the efficiency of shallow foundations. Architecture, Construction, Transport, (1), pp. 65-72. (In Russian). DOI 10.31660/2782-232X-2022-1-65-72.

5. Borodachev, N. M. (1972). Ob upravlenii raspredeleniem reaktivnykh davleniy pod podoshvoy fundamenta. Soprotivlenie materialov i teoriya sooruzheniy: respublikanskiy mezhvedomstvennyy nauchno-tekhnicheskiy sbornik. Kyiv, Budivel'nik Publ., (18), pp. 8-11. (In Russian).

6. Pronozin, Ya. A. (2016). Vzaimodeystvie lentochno-obolochechnykh fundamentov s sil'noszhimaemym gruntovym osnovaniem. Diss. dokt. tekhn. Nauk. Moscow, 368 p. (In Russian).

7. Pronozin, Ja. A., Poroshin, O. S., & Mel'nikov, R. V. Foundation. Patent na izobretenie 2393297 C1 RU, МPК E02D 27/01. No 2009116522/03. Applied: 29.04.2009. Published: 27.06.2010. (In Russian).

8. Glushkov, A. V. (2016). Vliyanie formy i razmerov podoshvy fundamentov na napryazhenno-deformirovannoe sostoyanie osnovaniya. Avtoref. diss. … kand. tekhn. nauk. Tyumen, 22 p. (In Russian).

9. Maeda, Yo., & Ochiai, H. (1992). Bearing capacity of shallow foundation with stepped footing on slopes. Memory of the Faculty of Engineering, 52(2), pp. 201-232. (In English). Available at: https://www7.civil.kyushu-u.ac.jp/ geotech/cd/data/106.pdf.

10. Hong, T., Teng, J. G., & Luo, Y. F. (1999). Axisymmetric shells and plates on tensionless elastic foundations. International Journal of Solids and Structures, 36(34), pp. 5277-5300. (In English). Available at: https://ru.zlibarticles.se/book/4163288/ce92e0. DOI 10.1016/s0020-7683(98)00228-5 (accessed 15.08.2023).

11. Das, B. M., & Sobhan, Kh. (2012). Principles of geotechnical engineering. Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States, Publ. Cengage Learning, 756 p. (In English). Available at: http:// faculty.tafreshu.ac.ir/file/download/course/1583609876-principles-of-geotechnical-engineering-8th-das.pdf.

12. Gritsuk, M. S. (1998). Ratsional'nye konstruktsii plit dlya lentochnykh fundamentov. Diss. dokt. tekhn. nauk. Brest, 283 p. (In Russian).

13. Arkhipov, D. N. (2006). Vzaimodeystvie gruntovogo osnovaniya i sbornykh lentochnykh fundamentov s geometricheski izmenyaemoy formoy podoshvy. Avtoref. diss. … kand. tekhn. nauk. Volgograd, 24 p. (In Russian).

14. Kyatov, N. Kh., & Kyatov, R. N. (2023). Proektirovanie osnovaniy i fundamentov. Moscow, «Yurayt» Publ, 327 p. (In Russian).

15. Martyusheva, A. I. (2017). Modelirovanie deformatsiy osnovaniya pod shtampami s razlichnoy formoy podoshvy. Neft' i gaz Zapadnoy Sibiri: materialy Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, November, 02-03. Tyumen, Industrial University of Tyumen, pp. 154-157. (In Russian).

16. Tetior, A. P. (1969). Ob ustoychivosti osnovaniya pod fundamentami s krivolineynoy formoy podoshvy. Izvestiya vuzov. Stroitel'stvo i arkhitektura, (5), P. 14. (In Russian).

17. Rybin, V. S., & Rybina, L. V. (2012). Opredelenie optimal'noy formy i razmerov podoshvy vnetsentrenno nagruzhennykh fundamentov melkogo zalozheniya. Osnovaniya, fundamenty i mekhanika gruntov, (1), pp. 6-9. (In Russian).

18. Ignatyuk, V. Yu. (1981). Teoreticheskie i eksperimental'nye issledovaniya raboty fundamentnykh plit s krivolineynoy poverkhnost'yu opiraniya. Diss. kand. tekhn. nauk. Moscow, 177 p. (In Russian).


Review

For citations:


Safaryan V.S. Freestanding foundation with stepped base. Results of a full-scale experiment. Architecture, Construction, Transport. 2023;(4):17-25. (In Russ.) https://doi.org/10.31660/2782-232X-2023-4-17-25

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)