Modelling the effect of pipeline inclination on the multiphase flow regime
https://doi.org/10.31660/2782-232X-2022-1-88-95
Abstract
The paper investigates the effect of an inclination angle of a straight pipeline on the gas-liquid two-phase flow regime at the same inlet conditions. The homogeneous Volume of Fluid (VOF) model in Ansys Fluent is used in this study for simulating the spread of the gas phase, changes in the entrance region and establishing of the multiphase flow regime. The authors consider a horizontal, vertical and inclined (60 degrees) pipelines where the stratified, bubbly and churn flow regimes are formed respectively, and the results are presented in terms of the gas phase distribution in the volume of the carrying liquid and the velocity field.
About the Authors
N. V. SerovRussian Federation
Nikita V. Serov, Leading Specialist
Noyabrsk
V. A. Kurushina
Russian Federation
Victoria A. Kurushina, PhD in Engineering, Head of Laboratory of Vibration and Hydrodynamics Modelling, Associate Professor at the Department of Transport of Hydrocarbon Resources
Tyumen
References
1. Falcone, G., Hewitt, G. F., & Alimonti, C. (2009). Multiphase flow metering principles. Amsterdam, Publ. Elsevier Science, 328 p. (In English).
2. Wu, B., Firouzi, M., Mitchell, T., Rufford, T. E., Leonardi, C., & Towler, B. (2017). A critical review of flow maps for gas-liquid flows in vertical pipes and annuli. Chemical Engineering Journal, (326), pp. 350- 377. (In English). DOI: 10.1016/j.cej.2017.05.135
3. Mandhane, J. M., Gregory, G. A., & Aziz, K. (1974). A flow pattern map for gas-liquid flow in horizontal pipes. International journal of multiphase flow, 1(4), pp. 537-553. (In English). DOI: 10.1016/0301- 9322(74)90006-8
4. Deendarlianto, Andrianto, M., Widyaparaga, A., Dinaryanto, O., Khasani, & Indarto. (2016). CFD Studies on the gas-liquid plug two-phase flow in a horizontal pipe. Journal of Petroleum Science and Engineering, (147), pp. 779-787. (In English). DOI: 10.1016/j.petrol.2016.09.019
5. Pao, W., Sam, B., Nasif, M. S., & Norpiah, R. B. M. (2017). Numerical validation of gas-liquid slug flow inside horizontal pipe. Journal of Fundamental and Applied Sciences, 9(5S), pp. 662-672. (In English). DOI: 10.4314/jfas.v9i5s.46
6. Zheng, D., He, X., & Che, D. (2007). CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow. International journal of heat and mass transfer, 50(21-22), pp. 4151-4165. (In English). DOI: 10.1016/j.ijheatmasstransfer.2007.02.041
7. Juggurnath, D., Dauhoo, M. Z., Elahee, M. K., Khoodaruth, A., Osowade, A. E., Olakoyejo, O. T., & Adelaja, A. O. (2017). Simulations of air-water two-phase flow in an inclined pipe. In proceedings of the 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 17–19 July. Slovenia, pp. 77-84. (In English).
8. Han, P., & Guo, L. (2015). Numerical simulation of terrain-induced severe slugging coupled by hydrodynamic slugs in a pipeline-riser system. International journal of heat and fluid flow, (56), pp. 355-366. (In English). DOI: 10.1016/j.ijheatfluidflow.2015.10.005
9. Li, W., Guo, L., & Xie, X. (2017). Effects of a long pipeline on severe slugging in an S-shaped riser. Chemical Engineering Science, (171), pp. 379-390. (In English). DOI: 10.1016/j.ces.2017.05.017
10. Tu, J., Yeoh, G., & Liu, C. (2018). Computational fluid dynamics: a practical approach. 2nd edition, revised. Oxford, Publ. Butterworth-Heinemann, 498 p. (In English).
Review
For citations:
Serov N.V., Kurushina V.A. Modelling the effect of pipeline inclination on the multiphase flow regime. Architecture, Construction, Transport. 2022;(1):88-95. (In Russ.) https://doi.org/10.31660/2782-232X-2022-1-88-95