Mechanical characteristics of viscoelastic water-saturated foundation
https://doi.org/10.31660/2782-232X-2025-4-74-85
EDN: AEVHFT
Abstract
When designing buildings and structures on soft water-saturated soils, it is necessary to calculate the stress-strain state of the foundation with creep. This allows us to predict the development of deformations over time, redistribute creep-induced forces to improve the reliability and durability of structures, and helps reduce the risk of emergencies. This study calculated the stress-strain state of a viscoelastic foundation using a kinematic soil model within the framework of the linear hereditary theory of viscoelasticity. Experimental graphs of pore pressure changes and stamp settlement were presented as time functions using broken-line method by L. E. Maltsev. All results are illustrated by graphs. A methodology for obtaining the original function from a transform is shown. Mechanical viscoelastic characteristics were determined according to the kinematic soil model. Using the obtained data, it is possible in the future to determine the development of settlement over time for viscoelastic water-saturated foundations.
About the Authors
T. V. KrizhanivskayaРоссия
Tatiana V. Krizhanivskaya, Cand. Sci. (Engineering), Associate Professor in the Department of Building
Structures
Tyumen
V. V. Vorontsov
Россия
Viacheslav V. Vorontsov, Cand. Sci. (Engineering), Associate Professor in the Department of Building
Structures
Tyumen
B. A. Tayeh
Палестина
Bassam A. Tayeh, PhD, Professor
Gaza
F. S. Kulichenko
Россия
Faina S. Kulichenko, Graduate Student
Moscow
References
1. Drucker D. C., Gibson R. E., Henkel D. Soil mechanics and work-hordening theories of plasticity. American Society of Civil Engineers. 1957;122(1). https://doi.org/10.1061/taceat.0007430
2. Ter-Martirosyan Z. G. Prediction of mechanical processes in multiphase soil masses. Moscow: Nedra, 1986. (In Russ.)
3. Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Luzin I. N. The stress-strain state of a finite rectangular domain under a uniformly distributed strip load. Soil Mechanics and Foundation Engineering. 2018;55(2):68–75. https://doi.org/10.1007/s11204-018-9505-5
4. Ter-Martirosyan Z. G., Filippov K. A. A solution to the problem of pile settlement caused by vertical static loading with consideration to plastic properties of the foundation soil. Vestnik MGSU. 2022;17(7):871–881. (In Russ.) https://doi.org/10.22227/1997-0935.2022.7.871-881
5. Shirokov V. N., Zabolotskaya A. A. Experience in determining the deformation characteristics of clay soils under conditions of odometric compression with static loading and in the stress relaxation mode. Bulletin of Lomonosov Moscow State University in Dushanbe. 2021;(3):115–127. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=47473814
6. Zhakulin A. S., Zhakulina A. A., Zhusupbekov A. Z., Nefedov V. N., Tungatarov A. M., Popov N. I. Prediction of the settlement of foundations by an elastic-plastic model of clay soils. Soil Mechanics and Foundation Engineering. 2022;59(3):224–228. https://doi.org/10.1007/s11204-022-09805-8
7. Abelev M. Yu., Averin I. V., Abelev K. M., Chunyuk D. Yu., Almazov A. A. Construction on weak, saturated clay soils. Moscow: Izdatel'stvo ASV, 2023. ISBN 978-5-4323-0483-4. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=54107159
8. Shashkin A. G., Shashkin K. G., Vasenin V. A. On the predictive capability of soil mechanics models. In: Sergeevskie chteniya. Fundamental'nye i prikladnye voprosy sovremennogo gruntovedeniya: Materialy godichnoy sessii Nauchnogo soveta RAN po problemam geoekologii, inzhenernoy geologii i gidrogeologii, Sankt-Peterburg, 31 March – 01 April, 2022. Moscow: Geoinfo, 2022. P. 326–332. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=48425502
9. Jia-Cai Liu, Guo-Hui Lei, Xu-Dong Wang. One-dimensional consolidation of visco-elastic marine clay under depth-varying and time-dependent load. Marine Georesources & Geotechnology. 2015;33(4):337–347. https://doi.org/10.1080/1064119X.2013.877109
10. Xiao-mi Li, Qian-qing Zhang, Shan-wei Liu. Semianalytical solution for long-term settlement of a single pile embedded in fractional derivative viscoelastic soils. International Journal of Geomechanics. 2021;21(2): 04020246. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001906
11. Demin V. A. Experimental and theoretical study of the stress-strain state of a two-phase viscoelastic medium: Dissertation abstract for the candidate of technical sciences degree. St. Petersburg; 2005. 30 p. (In Russ.) URL: https://viewer.rsl.ru/ru/rsl01002930116?page=1&rotate=0&theme=white
12. Tverdokhleb S. A., Vorontsov V. V. Laboratory test results on the consolidation of a soft, water-saturated clay macro-sample from a significant depth. In: Aktual'nye problemy arkhitektury, stroitel'stva, ekologii i energosberezheniya v usloviyakh Zapadnoy Sibiri: Sbornik materialov mezhdunarodnoy nauchno-prakticheskoy konferentsii: in 2 vol. Vol. 1. Tyumen, 23 April, 2015. Tyumen: Tyumen State University of Architecture and Civil Engineering; 2015. P. 64–72. (In Russ.)
13. Vorontsov V. V., Nabokov A. V., Ovchinnikov V. P., Tverdokhleb S. A. Results of compression pressure weak watersaturated clay macro sample using the "ground lock". Scientific and Technical Volga Region Bulletin. 2015;(1):60– 65. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=23136613
14. Maltsev L. E., Bai V. F., Maltseva T. V. Kinematic model of soil and biomaterials. Saint Petersburg: Stroyizdat; 2002. (In Russ.)
15. Bai V. F., Nabokov A. V., Vorontsov V. V., Kraev A. N. Experimental study of the stressed foundation from the water saturated reinforced loamy soil. Oil and gas studies. 2008;(1):102–104.
16. Maltseva T. V., Parfenova T. V. Influence of coincidence points in the method of lines on matrix conditioning. Oil and Gas Studies. 2002;(3):101–106. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=22897092
17. Krizhanivskaya T.V., Vorontsov V.V., Tayeh B.A. Analysis of a viscoelastic water-saturated clay foundation subjected to a strip load. Architecture, Construction, Transport. 2025;5(2):50-63. (In Russ.) https://doi.org/10.31660/2782-232X-2025-2-50-63
18. Krizhanivskaya T. V., Bai V. F., Maltseva T. V., Korkishko A. N. Calculation of water-saturated soil foundations. Tyumen: Industrial University of Tyumen; 2020. 141 p. ISBN 978-5-9961-2344-5. (In Russ.)
Review
For citations:
Krizhanivskaya T.V., Vorontsov V.V., Tayeh B.A., Kulichenko F.S. Mechanical characteristics of viscoelastic water-saturated foundation. Architecture, Construction, Transport. 2025;5(4):74-85. (In Russ.) https://doi.org/10.31660/2782-232X-2025-4-74-85. EDN: AEVHFT
JATS XML








