Study of ash deposits on the outer surfaces of convective tubes in a low-power solid fuel boiler
https://doi.org/10.31660/2782-232X-2025-4-50-62
EDN: AWFLEP
Abstract
This study presents the results of an investigation into the state of ash deposits on the surface of circular cross-section pipes in the convective sections of two hot-water heating boilers, model KVu-1.0 (manufactured by Baltkotlomash LLC, St. Petersburg), each with a thermal capacity of 1.0 MW. The boilers were operating on long-flame coal with a granulometric composition of 20–50 mm. The physical properties of the ash deposits and the factors influencing their formation on the pipe surface during boiler operation are briefly described. Based on the results of in-situ measurements of deposits formed during the 2023–2024 heating season, the growth of tube ash deposits was analyzed. The shape of the ash deposits is presented through graphs depicting their cross-sectional projection on convective tubes with a diameter of 48 mm.
About the Author
D. I. KashtanovРоссия
Dmitriy I. Kashtanov, Postgraduate Student in the Department of Heat and Gas Supply and Ventilation
Saint-Petersburg
References
1. Voitsekhovskaya O. K., Kashirskii D. E., Egorov O. V., Shefer O. V. Determination of wavelengths for remote sensing of hot combustion products of fuel under atmospheric conditions. Izvestiya vuzov. Fizika. 2015;58(10/3):132– 134. (In Russ.) https://www.elibrary.ru/whancp
2. Pereskokova S. A., Kopylova N. S., Yakovleva A. Y. Improving the design efficiency of solid fuel boilers with grate furnaces. Bulletin of Civil Engineers. 2014;(6):164–168. (In Russ.) URL: https://www.elibrary.ru/tflogj
3. Shkarovskiy A. L., Grimitlin A. M., Taurit V. R. Improving the use of solid fuel in the layered combustion method. Bulletin of Civil Engineers. 2022;(4):125–131. (In Russ.) https://doi.org/10.23968/1999-5571-2022-19-4-5-15
4. Yanguo Zhang, Qinghai Li, Hui Zhou. Chapter 6. Effects of ash deposition and slagging on heat transfer. In: Theory and Calculation of Heat Transfer in Furnaces. Elsevier; 2016. P. 173–191. https://doi.org/10.1016/B978-0-12-800966-6.00006-5
5. Yanquan Liu, Leming Cheng, Jieqiang Ji, Qinhui Wanga, Mengxiang Fang. Ash deposition behavior of a highalkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin. RSC Advances. 2018;8(59):33817-33827. https://doi.org/10.1039/C8RA05997G
6. Vardanyan M. A. Resource-saving and environmental activities of the heat power enterprise. Bulletin of Civil Engineers. 2019;(6):228–234. (In Russ.) https://doi.org/10.23968/1999-5571-2019-16-6-228-234
7. Zavorin A. S., Rakov Yu. Ya. Phenomenological models of formation of pipe deposits in boilers. Bulletin of the Tomsk Polytechnic University. 2005;(1):144–150. (In Russ.) URL: https://earchive.tpu.ru/bitstream/11683/567/1/bulletin_tpu-2005-308-1-31.pdf
8. Yang Xin. Development of ash deposition prediction models through the CFD methods and the ash deposition indice: PhD thesis. Sheffield; 2016. URL: https://etheses.whiterose.ac.uk/id/eprint/17127/1/Thesis-xy-2017.pdf
9. Bely V. V., Porozov S. V., Vasiliev V. V., Dekterev A. A., Tepfer E. S. Heat exchange investigation and modernization of furnace of P-67 boiler of 800 MW unit. Thermophys. Aeromech. 2007;14:287–299. https://doi.org/10.1134/ S0869864307020151
10. Dorfman Yu., Goryachikh N., Batukhtin A. Models of conduct of coals with different burning regimes and their application. Chita State University Journal. 2010;(9):119–125. (In Russ.) URL: https://www.elibrary.ru/nchvmj
11. Zavorin A. S., Rakov Y. Ya. Numerical modelling of coal burning processes with respect to their mineral content. Bulletin of the Tomsk Polytechnic University. 2004;(1):122–126. (In Russ.) URL: https://earchive.tpu.ru/bitstream/11683/221/1/bulletin_tpu-2004-307-1-24.pdf
12. Mukanov R. V., Svintsov V. Ya. Development and research of new liquid fuel combustion techniques. Bulletin of Civil Engineers. 2017;(1):182–191. (In Russ.) URL: https://vestnik.spbgasu.ru/article/razrabotka-i-issledovanienovyh-metodov-szhiganiya-zhidkogo-topliva
13. Marangwanda G. T., Madyira D. M., Babarinde T. O. Coal combustion models: A review. Journal of Physics: Conference Series. 2019;(1378):032070. https://doi.org/10.1088/1742-6596/1378/3/032070
14. Fomichev A. S., Koretskiy D. A., Zavorin A. S. Prediction of coal ash deposits in power boiler furnaces based on numerical modeling. Bulletin of the Tomsk Polytechnic University. 2013;(4):35–38. (In Russ.) URL: https://earchive.tpu.ru/handle/11683/4746?mode=full
15. Ots A. A. Processes in steam generators during combustion of oil shale and Kansk-Achinsk coal. Moscow: Energiya; 1977. 312 p. (In Russ.) URL: https://thelib.net/2328232-processy-v-parogeneratorah-pri-szhiganii-slancev-ikansko-achinskih-uglej.html
16. López Ch., Unterberger S., Maier J., Hein K. R. G. Overview of actual methods for characterization of ash deposition. In: Heat Exchanger Fouling and Cleaning: Fundamentals and Applications, ECI Symposium Series, Santa Fe, NM, USA, 18–22 May 2003. https://dc.engconfintl.org/heatexchanger/38
17. Kowalczyk-Juśko A. The influence of the ash from the biomass on the power boiler pollution. Journal of Ecological Engineering. 2017;18(6):200–204. https://doi.org/10.12911/22998993/76897
18. Zhiming Xu, Jinhui Li, Zhimin Han. Numerical study of particle fouling deposition on heat transfer surface. Energy Storage and Saving. 2022;1(1):44–52. https://doi.org/10.1016/j.enss.2021.11.001
19. Sherin E. A. Economic geographical analysis of the development of coal production cycle in Kuzbas. The Bulletin of Irkutsk State University. Series Earth Sciences. 2014;(10):115–124. (In Russ.) URL: https://izvestiageo.isu.ru/ru/article?id=74
Review
For citations:
Kashtanov D.I. Study of ash deposits on the outer surfaces of convective tubes in a low-power solid fuel boiler. Architecture, Construction, Transport. 2025;5(4):50-62. (In Russ.) https://doi.org/10.31660/2782-232X-2025-4-50-62. EDN: AWFLEP
JATS XML







