Preview

Architecture, Construction, Transport

Advanced search

Key parameters for calculating bubbling degassers

https://doi.org/10.31660/2782-232X-2025-4-36-49

EDN: LQTEJE

Abstract

Physical desorption, achieved through water bubbling in a free volume, is a fairly effective method for removing dissolved gases, particularly carbon dioxide. Bubbling degassers are characterized by their technological effectiveness, simple design, and reliable operation regardless of the season. In some cases, studies of bubbling plants are theoretical in nature and don’t take into account most of their physicochemical composition parameters and design features of the units. As a result, the calculation equations become approximations for laboratory data or recommendations with additional conditions. Physical phenomena, as they need to be described during bubbling for practical application, are explained by the π-theorem or the experimental design method. A summary of theoretical and experimental data for determining the calculating parameters of bubbling degassers let us conclude that using the diffusion coefficient is inappropriate. In the absence of data on the desorption coefficient, we recommended to use the water-air ratio and the contact time, depending on the expected effect of carbon dioxide removal, as determining parameters for calculation.

About the Authors

A. G. Zhulin
Industrial University of Tyumen
Россия

Alexander G. Zhulin, Cand. Sci. (Engineering), Associate Professor, Associate Professor in the Department of
Engineering Systems and Structures

Tyumen



O. V. Sidorenko
Industrial University of Tyumen
Россия

Olga V. Sidorenko, Cand. Sci. (Engineering), Associate Professor, Head of the Department of Engineering
Systems and Structures

Tyumen



References

1. Кастальский А. А. Design of devices for removing dissolved gases from water during water treatment. Moscow: Gosstroyizdat; 1957. 186 p. (In Russ.)

2. Sharapov V. I., Sivukhina M. A. Decarbonizers for water treatment units in heating systems. Moscow: ASV; 2000. 200 p. (In Russ.)

3. Skolubovich YU. L., Voytov Ye. L., Skolubovich A. Yu., Frolov A. Ye. Research of groundwater purification in an aerator-degasser. Vodoochistka. Vodopodgotovka. Vodosnabzheniye. 2011;(8):44–47. (In Russ.) URL: https://elibrary.ru/ofspon

4. Gladkov V. A., Aref'yev YU. I., Ponomarenko V. S. Fan cooling towers. Moscow: Stroyizdat; 1976. 216 с. (In Russ.) URL: https://akvann.ru/sites/default/files/Вентиляторные%20градирни%20Гладков%20Арефьев%20Пономаренко%201976г.pdf

5. Morgunova E. P., Davidkhanova M. G. Determination of mass rating coefficients at desorption of carbon dioxide. In: Povysheniye energoresursoeffektivnosti i ekologicheskoy bezopasnosti protsessov i apparatov khimicheskoy i smezhnykh otrasley promyshlennosti (ISTS «EESTE-2021»), Moscow, 20–21 October, 2021. Vol. 1. Moscow: A.N. Kosygin Russian State University (Technologies, Design, Art); 2021. P. 283–286. (In Russ.) https://doi.org/10.37816/eeste-2021-1-283-286

6. Aynshteyn V. G., Zakharov M. K., Nosov G. A., Zakharenko V. V., Zinovkina T. V., Taran A. L., Kostanyan A. Ye. General course of processes and apparatuses of chemical engineering: in 2 volumes. Moscow: Khimiya; 2000. (In Russ.)

7. Azer'yer S. Kh. (eds.) Water supply in railway transport. Vol. II. Moscow: Transportnoye zheleznodorozhnoye izdatel'stvo; 1940. 508 p. (In Russ.)

8. Rumyantseva L. P. Spray systems for iron removal from water. Moscow: Stroyizdat; 1973. 104 p. (In Russ.)

9. Sterman L. S., Pokrovskiy V. N. Physical and chemical methods of water treatment at thermal power plants. Moscow: Energoatomizdat, 1991; 328 p. (In Russ.) URL: https://djvu.online/file/VgYIHNrn9Da0p

10. Frog B. N., Pervov A. G. Water treatment. Moscow: ASV; 2014. 512 p. (In Russ.) https://www.litres.ru/get_pdf_trial/17187451.pdf

11. Ivanov A. E., Volkova O. A., Klyushenkova M. I., Berengarten M. G. Optimization of iron removal process in artesian waters. Voda: khimiya i ekologiya. 2011;(4):25–31. (In Russ.) URL: https://www.elibrary.ru/ohupun

12. Lavrov N. A., Skornyakova Ye. A. Modeling of processes of liquid purification from dissolved gas during bubbling. Herald of the Bauman Moscow State Technical University. Series mechanical engineering. 2010;(S1):155–160. (In Russ.) URL: https://www.elibrary.ru/ncesuh

13. Levich V. G. Physicochemical Hydrodynamics. Moscow: Gosudarstvennoye izdatel'stvo fiziko-matematicheskoy literatury; 1959. 700 p. (In Russ.) URL: https://djvu.online/file/cy4jzFbJHOD4E

14. Bazarov Yu. B., Meshkov D. Ye., Meshkov Ye. Ye., Sivolgin V. S. Investigation of the rise of an air bubble in a square water channel. Vestnik Sarovskogo FiZTekha. 2005;(8):68–73. (In Russ.) URL: http://videoscan.ru/page/805

15. Kukhtin B. A., Chernova O. B. Surface phenomena and dispersed systems. Vladimir: VlSU; 2021. 153 p. (In Russ.) URL: https://dspace.www1.vlsu.ru/bitstream/123456789/9073/1/02215.pdf

16. Kopylov A. S., Lavygin V. M., Ochkov V. F. Water treatment in the energy sector. Moscow: MPEI; 2003. 309 p. (In Russ.)

17. Ostrovskiy G. M. (eds.) New Handbook for Chemists and Technologists. Processes and Equipment for Chemical Engineering. Part 2. Saint Petersburg: NPO «ProfessionaL»; 2006. 916 p. (In Russ.)

18. Kafarov V. V. Fundamentals of Mass Transfer. Moscow: Vysshaya shkola; 1979. 439 p. (In Russ.)

19. Zhulin A. G., Sidorenko O. V., Belova L. V. Bubbler degassers for iron removal stations (general recommendations for use and calculation). News of higher educational institutions. Construction. 2012;(3):39–48. (In Russ.) URL: https://www.elibrary.ru/pashqx

20. Abdel-Rahman Z. A., Hasanb B. O., Abdullah A. K. A study of mass transfer into a liquid falling film in spiral tubes using CO2 - water system. The Iraqi Journal For Mechanical And Material Engineering. 2010;Special Issue (B):62–70. URL: https://www.researchgate.net/publication/271135494_A_STUDY_OF_MASS_TRANSFER_INTO_A_LIQUID_FALLING_FILM_IN_SPIRAL_TUBES_USING_CO_2_-_WATER_SYSTEM

21. Ramm V. M. Gas Absorption. 2nd edition, revised. Moscow: Khimiya; 1976. 656 p. (In Russ.) URL: https://djvu.online/file/uWpBytFV8pHA9?ysclid=mhcyga4cas342940059

22. Devyanin V. A. Regularities of bubble formation on the holes of immersed hole sheets of bubble devices. Teploenergetika = Thermal Engineering. 2024;(8):42–54. https://doi.org/10.56304/S0040363624700097

23. Bolotova O. V. Research on the reduction of carbon dioxide content in groundwater in the Tyumen region: abstract of a dissertation for the degree of candidate of technical sciences. Nizhny Novgorod, 2005. 16 p. (In Russ.) https://viewer.rsl.ru/ru/rsl01002973753?page=4&rotate=0&theme=white

24. Zhulin A. G., Bolotova O. V. On the assignment of bubbling parameters for removing carbon dioxide from groundwater during iron removal. News of higher educational institutions. Construction. 2002;(12):66–70. (In Russ.)

25. Lapteva E. A., Farakhov M. I. Determining the efficiency of desorption of corrosive-active gases in columns with chaotic and regular nozzles. Thermal Engineering. 2021;68(2):165–169. https://doi.org/10.1134/S0040601521010158

26. Flagiello D., Parisi A., Lancia A., Di Natale F. A Review on gas-liquid mass transfer coefficients in packed-bed columns. ChemEngineering. 2021;5(3):43. https://doi.org/10.3390/chemengineering5030043

27. Echarte R., Campana H., Brlgnole E. A. Effective areas and liquid film mass transfer coefficients in packed columns. Industrial & Engineering Chemistry Process Design and Development. 1984;23:349–354.

28. Dytnerskiy Yu. I. Chemical engineering processes and apparatus. Part 2. Mass transfer processes and apparatus. 2nd edition. Moscow: Khimiya; 1995. 368 p. (In Russ.) URL: https://djvu.online/file/9f5bpkurfGX63?ysclid=mhd 0g1jj7s967271817


Review

For citations:


Zhulin A.G., Sidorenko O.V. Key parameters for calculating bubbling degassers. Architecture, Construction, Transport. 2025;5(4):36-49. (In Russ.) https://doi.org/10.31660/2782-232X-2025-4-36-49. EDN: LQTEJE

Views: 43

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)