Influence of the shape and size of plasticizer particles on the reduction of stiffness in thermoplastic polymers
https://doi.org/10.31660/2782-232X-2025-2-77-86
EDN: tkbifs
Abstract
Plastic can be recycling in three ways: chemical, thermal, and mechanical. Each method has its advantages and disadvantages. The most prevalent is mechanical processing, resulting in recycled materials or composite materials. A key objective in producing composite materials through this method is to restore or enhance their properties using modifiers. The properties of these additives depend on the shape and size of their particles. Energy-dispersive X-ray spectroscopy was used to determine the elemental chemical composition of a plasticizer based on highly dispersed calcium hydroxide. X-ray diffraction analysis performed on a DRON-7 diffractometer made it possible to identify the chemical compounds within the additive. Scanning electron microscopy was employed to determine the shape and size of the particles. The optimal result, specifically a four-fold reduction in stiffness, was achieved using spherical particles with a size range of 0.5–1 μm.
Keywords
About the Authors
Yurij E. YakubovskyRussian Federation
Yurij E. Yakubovsky, Dr. Sci. (Engineering), Professor, Professor in the Department of Applied Mechanics,
38, Volodarskogo St., Tyumen, 625000.
Konstantin V. Kuskov
Russian Federation
Konstantin V. Kuskov, Cand. Sci. (Engineering), Associate Professor in the Department of Materials Science and Technology of Structural Materials,
38, Volodarskogo St., Tyumen, 625000.
Anton A. Khyzov
Russian Federation
Anton A. Khyzov, Senior Lecturer in the Department of Materials Science and Technology of Structural Materials,
38, Volodarskogo St., Tyumen, 625000.
References
1. Zhang, Y., Duan D., Lei H., Villota E., Ruan R. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy. 2019;251:113337. http://dx.doi.org/10.1016/j.apenergy.2019.113337
2. Mangesh V. L., Padmanabhan S., Tamizhdurai P., Ramesh A. Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production. 2019;246:119066. http://dx.doi.org/10.1016/j.jclepro.2019.119066
3. Balpreet Kaur, Raj Kumar Gupta, Haripada Bhunia. Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: Breakthrough adsorption study. Microporous and Mesoporous Materials. 2019;282:146–158. http://dx.doi.org/10.1016/j.micromeso.2019.03.025
4. Patrusheva T. N, Petrov S. K, Matveev P. V., Bortsova S. S. Pyrolysis as advanced processing direction of plastic waste for power generation. Chemical Technology. 2021;22(8):355–359. (In Russ.) https://doi.org/10.31044/16845811-2021-22-8-355-359
5. Coates G. W., Getzler Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials. 2020;5(7):501–516. https://doi.org/10.1038/s41578-020-0190-4
6. Awang N. W. B., Hadiyono M. A. B. R., Abdellatif M. M, Nomura K. Depolymerization of PET with ethanol by homogeneous iron catalysts applied for exclusive chemical recycling of cloth waste. Industrial Chemistry& Materials. 2025;(3):49–56. https://doi.org/10.1039/d4im00081a
7. Cousins D. S., Suzuki Ya., Murray R. E., Samaniuk J. R., Stebner A. Recycling glass fiber thermoplastic composites from wind turbine blades. Journal of Cleaner Production. 2019;209:1252–1263. http://dx.doi.org/10.1016/j.jclepro.2018.10.28
8. Vershkov A. V., Donskaya M. A. Recycling of plastic waste in the conditions of the krasnoyarsk territory. Russian Journal of Resources, Conservation and Recycling. 2023;(10)1. (In Russ.) https://doi.org/10.15862/31INOR123
9. Sinichuk A. E., Rodina T. A. Use of secondary polyethylene granules in the production of polymeric products. Vestnik Amurskogo gosudarstvennogo universiteta. Seriya: Estestvennye i ekonomicheskie nauki. 2021;(93):104– 107. (In Russ.) https://doi.org/10.22250/jasu.93.23
10. Kulikov V. Yu., Issagulov A. Z., Shcherbakova E. P., Kovaljva T. V. Study of the properties of polystyrene containing secondary granules of expanded polystyrene. Vestnik of Nosov Magnitogorsk State Technical University. 2017;15(4):40–46. (In Russ.) https://doi.org/10.18503/1995-2732-2017-15-4-40-46
11. Chirkov D. D., Kulazhenko Yu. M., Biktimirova O. E., Shkuro A. E., Glukhikh V. V. Physical and mechanical properties of polymeric composites with a polyvinl chloride polymeric phase and linoleum production waste. Herald of Technological University. 2023;26(10):69–74. (In Russ.) https://doi.org/10.55421/1998-7072_2023_26_10_69
12. Storodubtseva T. N., Aksomitny A. A., Kuznetsov D. S. Study of the thermophysical properties of wood polymer sandy composition material. Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika. 2018;6(7):142–145. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=36745462.
13. Profatilo I. V. To the question on the use of polymer wastes in creating polymer sanding compositions. Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science. 2019;9(1):126–134. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=37082082.
14. Kramarenko A. V., Mavlyutov A. N. Improvement of structure of polymer-peschanoy of the tile. Science. Engineering. Technology (polytechnical bulletin). 2018;(1):230–232. (In Russ.) URL: https://id-yug.com/index.php/ru/ntt/archiv/2018/1-2018?id=1036.
15. Valeeva A. R., Alekseeva A. D., Saerova K. V. Study of the effect of furfuryl alcohol on the hardness of a woodpolymer composite. Aktual'nye problemy lesnogo kompleksa. 2024;(65):191–192. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=67316890.
16. Zimakova G. A., Kasper E. A., Bochkareva O. S. Mechanical properties of cement composites reinforced with ceramic fiber. Architecture, Construction, Transport. 2024;(4): 44-54. (In Russ.) https://doi.org/10.31660/2782232X-2024-4-44-54
17. Kuyukov S. A., Tretyakov P. U., Testeshev A. A., Zamyatin A. V., Zhigailov A. A. Electrically conductive cement concrete using graphite. Architecture, Construction, Transport. 2024;(4):77–87. (In Russ.) https://doi.org/10.31660/2782-232X-2024-4-77-87
18. Khantimirov A. G., Abdrakhmanova L. A., Nizamov R. K., Khozin V. G. Wood-polymer composites based on polyvinyl chloride reinforced with basalt fiber. News of the Kazan State University of Architecture and Engineering. (In Russ.) 2022;(3):75–81. https://doi.org/10.52409/20731523_2022_3_75
19. Yakubovsky Yu. E., Khairullina L. B., Dubrovsky E. G. Addressing environmental safety issues through recycling of secondary thermoplastics. Ecology and Industry of Russia. 2024;28(12):4–7. https://doi.org/10.18412/18160395-2024-12-4-7
20. Jakubovski Yu. E., Dubrovsky E. G., Khairullina L. B., Aleksandrov S. V. Composite building materials based on recycled thermoplastic polymers. Construction of Unique Buildings and Structures. 2024;113:11311. URL: https://unistroy.spbstu.ru/article/2024.114.11/
Review
For citations:
Yakubovsky Yu.E., Kuskov K.V., Khyzov A.A. Influence of the shape and size of plasticizer particles on the reduction of stiffness in thermoplastic polymers. Architecture, Construction, Transport. 2025;5(2):77-86. (In Russ.) https://doi.org/10.31660/2782-232X-2025-2-77-86. EDN: tkbifs