Analysis of a viscoelastic water-saturated clay foundation subjected to a strip load
https://doi.org/10.31660/2782-232X-2025-2-50-63
EDN: hrflzd
Abstract
Designing buildings and structures on weak, water-saturated clay foundations necessitates calculating the stress-strain state of soils over time, considering consolidation processes. These soils exhibit creep behavior, respectively, making a viscoelastic representation of the foundation a promising modeling approach. Numerical analysis identified a parameter for solving the transcendental equation of a nonmonotonic function that describes the viscoelastic mechanical properties of the water-saturated clay loam. Experimental pore pressure data were compared with data obtained from the solution of the time function, with a maximum discrepancy of 4.44 per cent. A mechanical characteristic (a universal parameter of the kinematic soil model) obtained in this study can be used in future to fully calculate the stress-strain state of viscoelastic, water-saturated foudations. The proposed approach undoubtedly holds practical value in the design and construction of engineering structures.
About the Authors
Tatiana V. KrizhanivskayaRussian Federation
Tatiana V. Krizhanivskaya, Cand. Sci. (Engineering), Associate Professor in the Department of Building Structures,
38, Volodarskogo St., Tyumen, 625000.
Viacheslav V. Vorontsov
Russian Federation
Viacheslav V. Vorontsov, Cand. Sci. (Engineering), Associate Professor in the Department of Building Structures,
38, Volodarskogo St., Tyumen, 625000.
Bassam A. Tayeh
Palestinian Territory, Occupied
Bassam A. Tayeh, PhD, Professor,
Gamal Abdel Nasser St., Gaza.
References
1. Ter-Martirosyan Z. G. Prediction of mechanical processes in multiphase soil masses. Moscow: Nedra; 1986. (In Russ.)
2. Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Luzin I. N. The stress-strain state of a finite rectangular domain under a uniformly distributed strip load. Soil Mechanics and Foundation Engineering. 2018;55(2):68–75. https:// doi.org/10.1007/s11204-018-9505-5
3. Ter-Martirosyan Z. G., Filippov K. A. A solution to the problem of pile settlement caused by vertical static loading with consideration to plastic properties of the foundation soil. Vestnik MGSU. 2022;17(7):871–881. (In Russ.) https://doi.org/10.22227/1997-0935.2022.7.871-881
4. Abelev M. Yu., Averin I. V., Kopteva O. V. Comparison of field and laboratory studies results of the clay soils deformability characteristics. Industrial and Civil Engineering. 2019;(6):40–45. (In Russ.) https://doi.org/10.33622/0869-7019.2019.06.40-45
5. Abelev M. Yu., Averin I. V., Abelev K. M., Chunyuk D. Yu., Almazov A. A. Construction on weak, saturated clay soils. Moscow: Izdatel'stvo ASV; 2023. ISBN 978-5-4323-0483-4. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=54107159.
6. Zhussupbekov A. Zh., Ulitsky V. M., Dyakonov I. P., Nikolaeva M. V. Obtaining the physical and mechanical characteristics of limnoglacial deposits in St. Petersburg for constructing a soil mathematical model. Bulletin of Civil Engineers. 2023;(2):44–55. (In Russ.) https://doi.org/10.23968/1999-5571-2023-20-2-44-55
7. Shashkin A. G., Shashkin K. G., Vasenin V. A. On the predictive capability of soil mechanics models. In: Sergeevskie chteniya. Fundamental'nye i prikladnye voprosy sovremennogo gruntovedeniya: Materialy godichnoy sessii Nauchnogo soveta RAN po problemam geoekologii, inzhenernoy geologii i gidrogeologii, Saint Petersburg, 31 March – 01 April, 2022. Moscow: Geoinfo; 2022. P. 326–332. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=48425502.
8. Vostrikov K. V., Smolin J. P., Klimenok A. V. The separation technique of filtration consolidation and creep of saturated soils skeleton. Siberian Transport University Bulletin. 2018;(3):70–76. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=43112611.
9. Vorontsov V. V., Nabokov A. V., Ovchinnikov V. P., Tverdokhleb S. A. Results of compression pressure weak watersaturated clay macro sample using the "ground lock". Scientific and Technical Volga Region Bulletin. 2015;(1):60– 65. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=23136613.
10. Tverdokhleb S. A., Vorontsov V. V. Laboratory test results on the consolidation of a soft, water-saturated clay macro-sample from a significant depth. In: Aktual'nye problemy arkhitektury, stroitel'stva, ekologii i energosberezheniya v usloviyakh Zapadnoy Sibiri: Sbornik materialov mezhdunarodnoy nauchno-prakticheskoy konferentsii: in 2 vol. Vol. 1. Tyumen, 23 April, 2015. Tyumen: Tyumen State University of Architecture and Civil Engineering; 2015. P. 64–72. (In Russ.)
11. Maltseva T., Nabokov A., Vatin N. Consolidation of water-saturated viscoelastic subgrade. Magazine of Civil Engineering. 2024;(1):12502. https://doi.org/10.34910/MCE.125.2
12. Demin V. A. Experimental and theoretical study of the stress-strain state of a two-phase viscoelastic medium: Dissertation abstract for the candidate of technical sciences degree. St. Petersburg; 2005. (In Russ.) URL: https:// viewer.rsl.ru/ru/rsl01002930116?page=1&rotate=0&theme=white.
13. Maltseva T. V., Kraev A. N., Zhaisambayev E. A. Modeling of mechanical processes in a soil base taking into account the viscoelastic properties of soil. In: XIII Vserossiyskiy s"ezd po teoreticheskoy i prikladnoy mekhanike: sbornik tezisov dokladov: in 4 vol. Vol. 3. Ministerstvo nauki i vysshego obrazovaniya RF; Rossiyskaya akademiya nauk; Rossiyskiy natsional'nyy komitet po teoreticheskoy i prikladnoy mekhanike; Sankt-Peterburgskiy politekhnicheskiy universitet Petra Velikogo. Saint Petersburg, 21–25 August, 2023. St. Petersburg: Polytech Press; 2023. P. 137–141. (In Russ.)
14. Krizhanivskaya T. V., Bai V. F., Maltseva T. V., Korkishko A. N. Calculation of water-saturated soil foundations. Tyumen: Industrial University of Tyumen; 2020. ISBN 978-5-9961-2344-5. (In Russ.)
15. Zaretsky Yu. K. Theory of soil consolidation. Moscow: Nauka; 1967. (In Russ.)
16. Paramonov V. N. Finite element method for solving nonlinear geotechnical problems. Saint Petersburg: GK "Georekonstruktsiya"; 2012. (In Russ.) URL: http://georeconstruction.ru/books/paramonov.pdf.
17. Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Ermoshina L. Yu. Settlement and long-term bearing capacity of the pile taking into account the rheological properties of soils. Construction and Geotechnics. 2022;13(1):5–15. https://doi.org/10.15593/2224-9826/2022.1.01
18. Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Dam H. H. Interaction between a barrette and multilayered surrounding and underlying soils, taking into account their elastic and elastic-viscoplastic properties. Vestnik MGSU. 2022;17(9):1135–1144. (In Russ.) https://doi.org/10.22227/1997-0935.2022.9.1135-1144
19. Ter-Martirosyan Z. G., Ter-Martirosyan A. Z., Sidorov V. V., Almakayeva A. S. Determination of elastic-visco-plastic parameters of soils based on the results of torsional shear tests. Industrial and civil engineering. 2022;(10):45– 55. (In Russ.) https://doi.org/10.33622/0869-7019.2022.10.45-55
20. Jia-Cai Liu, Guo-Hui Lei, Xu-Dong Wang. One-dimensional consolidation of visco-elastic marine clay under depth-varying and time-dependent load. Marine Georesources & Geotechnology. 2015;33(4):337–347. https://doi.org/10.1080/1064119X.2013.877109
21. Xiao-mi Li, Qian-qing Zhang, Shan-wei Liu. Semianalytical solution for long-term settlement of a single pile embedded in fractional derivative viscoelastic soils. International Journal of Geomechanics. 2021;21(2): 04020246. http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0001906
22. Trefilina E. R., Trefilin I. A. Construction of buildings and structures on two-phase elastic bases. Architecture, Construction, Transport. 2021;(1):20–29. URL: https://www.elibrary.ru/item.asp?id=46409676
23. Gladkov A. E., Maltseva T. V., Isakova N. P. Method for determining the mechanical characteristics of viscoelastic soils. Architecture, Construction, Transport. 2023;(4):26–33. https://doi.org/10.31660/2782-232X-2023-4-26-33
24. Maltsev L. E., Bai V. F., Maltseva T. V. Kinematic model of soil and biomaterials. Saint Petersburg: Stroyizdat; 2002. (In Russ.)
25. Maltseva T. V. Mathematical theory of saturated soil. Tyumen: Vector Book; 2012. (In Russ.)
26. Adler Yu. P., Markova E. V., Granovsky Yu. V. Planning an experiment in the search for optimal conditions. 2nd edition. Moscow: Nauka; 1976. (In Russ.)
27. Vorontsov V. V. Vertical reinforcement of the active layer at the base of the road structure: Dissertation for the candidate of technical sciences degree. Tyumen: Tyumen State University of Architecture and Civil Engineering; 2006. (In Russ.)
28. Maltseva T. V., Parfenova T. V. Influence of coincidence points in the method of lines on matrix conditioning. Oil and Gas Studies. 2002;(3):101–106. (In Russ.) URL: https://www.elibrary.ru/item.asp?id=22897092.
Review
For citations:
Krizhanivskaya T.V., Vorontsov V.V., Tayeh B.A. Analysis of a viscoelastic water-saturated clay foundation subjected to a strip load. Architecture, Construction, Transport. 2025;5(2):50-63. (In Russ.) https://doi.org/10.31660/2782-232X-2025-2-50-63. EDN: hrflzd