Preview

Architecture, Construction, Transport

Advanced search

Temperature calculation of soil foundation in geotechnical software packages

https://doi.org/10.31660/2782-232X-2024-3-54-63

Abstract

A crucial step in addressing the challenge of constructing shallow foundations on seasonally freezing heaving soils is performing temperature calculations of the soil foundation. The software packages Frost 3D and QFrost can be used for conducting these temperature calculations. This research compared the results of calculating frost penetration depths of a test site’s soil foundation using Frost 3D and QFrost with data from geotechnical monitoring. The test site was located in Tyumen, in the vicinity of the Bereznyaki settlement. The study found that using Frost 3D and QFrost software packages for modeling the soil foundation allows for determining frost penetration depths with an error of up to 3.5 %, indicating the reliability of the results and the possibility of using these software packages for performing temperature calculations.

About the Authors

D. S. Skvortsov
Industrial University of Tyumen
Russian Federation

Dmitry S. Skvortsov, Assistant in the Department of Building Structures

Tyumen



A. I. Sinitski
Scientific Center for Arctic Studies
Russian Federation

Anton I. Sinitskii, Cand. Sci. (Geology and Mineralogy), Leading Researcher

Salekhard



E. A. Zhajsambaev
Industrial University of Tyumen
Russian Federation

Erkn A. Zhajsambaev, Postgraduate Student in the Department of Construction Production

Tyumen



References

1. Marahtanov V. P. Pipelines pile foundation cryogenic deformations. Truboprovodnyy transport: teoriya i praktika. 2013;5:18–22. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=23502631.

2. Pazinyak V. V., Kutvitskaya N. B., Minkin M. A. The experimental researches on pipeline stability for large'scale soil model. Earth`s Cryosphere. 2006;X(1):51–55. (In Russ.) Available at: https://earthcryosphere.ru/archive/2006_1/07.Pazinyak_1_2006.pdf.

3. Recommendations for the design and calculation of shallow foundations on powdery soils [Order of the Red Banner of Labor N. M. Gersevanov NIIOSP of the USSR Gosstroy]. Moscow: Order of the Red Banner of Labor N. M. Gersevanov NIIOSP of the USSR Gosstroy; 1985. (In Russ.) Available at: https://docs.cntd.ru/document/1200074992.

4. Baj V. F., Mal'tseva T. V., Nabokov A. V., Vorontsov V. V., Minaeva A. V. Theoretical prerequisites for the calculation of sand reinforced massifs in weak clay soils. Oil and Gas Studies. 2011;(1):102–106. (In Russ.) Available at: https://elibrary.ru/item.asp?id=16452831.

5. Maltsev L. E., Maltseva T. V., Minayeva A. V., Nabokov A. V. Definition of displacement reinforcing element sandy cylinder. Scientific and Technical Volga Region Bulletin. 2012;(2):234–238. (In Russ.) Available at: https://elibrary.ru/item.asp?id=17779954.

6. Maltseva T. V., Nabokov A. V., Chernykh A. V. Reinforced sand piles for low-rise buildings. Vestnik Tyumenskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. 2015;(2):34–39. (In Russ.) Available at: https://elibrary.ru/item.asp?id=24389410.

7. Bay V. F., Kraev A. N. Research of performance of the sand pad reinforced on the contour with the curvilinear sole in the conditions of weak clay soil. Bulletin of Civil Engineers. 2014;(3):107–110. (In Russ.) Available at: https://www.elibrary.ru/item.asp?id=21813073.

8. Tazhigulov A. A. Sandy cushions with geotextile on weak water-saturated clay soils. Moscow: Moscow State University of Civil Engineering; 1993. (In Russ.)

9. Tat'yannikova D. A., Ponomarev A. B. Model die tests to investigate the performance of reinforced foundation pads under load. In: Inzhenerno-geotekhnicheskie izyskaniya, proektirovanie i stroitel'stvo osnovaniy, fundamentov i podzemnykh sooruzheniy. Saint Petersburg: Saint Petersburg State University of Architecture and Civil Engineering; 2017. P. 219–223. (In Russ.)

10. Mirsayapov I. T., Sharafutdinov R. A. Bearing capacity and precipitation of soil foundations reinforced by vertical and horizontal elements. News of the Kazan State University of Architecture and Engineering. 2016;(2):111–116. (In Russ.) Available at: https://www.elibrary.ru/download/elibrary_26455345_84235665.pdf.

11. Grishina A., Mashchenko A., Ponomarev A. Results of strength research of clay soil reinforced by different geosynthetics. PNRPU Bulletin. Urban development. 2015;(4):9–21. (In Russ.) Available at: https://vestnik.pstu.ru/urbanistic/archives/?id=&folder_id=5274.

12. Jones C. J. F. P. Earth reinforcement and soil structures. Oxford: Butterworth-Heinemann; 1988. Available at: https://www.academia.edu/40325571/Earth_Reinforcement_and_Soil_Structures.

13. Khrustalev L. Fundamentals of geotechnics in the cryolithozone. Moscow: INFRA-M; 2019. https://doi.org/10.12737/textbook_5c6142a7282862.58234241

14. Pavlov A. R., Matveeva M. V. Iterative finite-difference scheme for the problem of heat and mass transfer in freezing grounds. Vestnik of Samara University/ Natural Science Series. 2007;(6):242–252. (In Russ.) Available at: http://vestniksamgu.ssau.ru/est/2007web6/math/2007560310.pdf.

15. Kronik Ya. A., Demin I. I. Calculations of temperature fields and stress-strain state of soil structures by finite element method. Moscow: Moscow Engineering and Construction Institute; 1982. (In Russ.)

16. Roman L. T. Mechanics of frozen soils. Moscow: Nauka/Interperiodika; 2002. (In Russ.)

17. Makarov A. S., Kraev A. N., Tverdokhleb S. A., Shankhoev Z. Sh. Results of experimental research and numerical modeling of plane-parallel freezing of a soil sample in an experimental test-bed. Russian Journal of Transport Engineering. 2017:4(4):09TS417. (In Russ.) http://dx.doi.org/10.15862/09TS417

18. Sakharov I. I., Paramonov V. N., Paramonov M. V., Igoshin M. E. Deformations of frost heave and thawing of soils during operation and damage of seasonal cooling devices. Industrial and Civil Engineering. 2017;(12):23–30. (In Russ.) Available at: https://elibrary.ru/item.asp?id=32278886.

19. Kudryavtsev S. A., Sakharov I. I., Paramonov V. N. Freezing and thawing of soils. Saint Petersburg: Georekonstruktsiya; 2014. (In Russ.) Available at: http://geo-bookstore.ru/files/KudrSahPar.pdf.

20. Mel'nikov A. V. Influence of foundation heat insulation on temperature conditions change of the seasonally frozen soil base in the area of deep seasonal freezing. Bulletin of Civil Engineers. 2012;(6):77–83. (In Russ.) Available at: https://elibrary.ru/item.asp?id=20153977.

21. Osokin N. I., Sosnovsky A. V., Nakalov P. R., Nenashev S. V. Thermal resistance of snow cover and its effect on the ground freezing. Ice and Snow. 2013;53(1):93–103. (In Russ.) https://doi.org/10.15356/2076-6734-2013-1-93-103

22.


Review

For citations:


Skvortsov D.S., Sinitski A.I., Zhajsambaev E.A. Temperature calculation of soil foundation in geotechnical software packages. Architecture, Construction, Transport. 2024;(3):54-63. (In Russ.) https://doi.org/10.31660/2782-232X-2024-3-54-63

Views: 21


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)