Preview

Architecture, Construction, Transport

Advanced search

Analytical determination of the relaxation function of viscoelastic frozen soil based on experimental data

https://doi.org/10.31660/2782-232X-2024-3-36-43

Abstract

Strength and creep of frozen soils are among the main mechanical properties for time estimation in the design of construction objects. Based on experimental data, the authors determined deformational mechanical characteristics of frozen soil, including creep, and obtained a creep function of frozen soil. Using this creep function, the authors analytically determined the relaxation function of frozen soil using the broken lines method. This methodology can be used in the design of foundations for construction objects made of frozen soils.

About the Authors

E. V. Koreshkova
Industrial University of Tyumen
Russian Federation

Elena V. Koreshkova, Cand. Sci. (Engineering), Associate Professor, Associate Professor in the Department of Building Materials

Tyumen



A. A. Shusharin
Industrial University of Tyumen
Russian Federation

Alexander A. Shusharin, Research Engineer

Tyumen



N. M. Hasanov
Tajik Technical University named after academician M. S. Osimi
Tajikistan

Nurali M. Hasanov, Dr. Sci. (Engineering), Professor, Head of the Department of Bases, Foundations and Underground Structures

Dushanbe



References

1. Volokhov S. S., Nikitin I. N., Lavrov D. S. Temperature deformation of frozen soils caused by rapid changes in temperature. Moscow University Geology Bulletin. 2017;72(3):224–229. https://doi.org/10.3103/S0145875217030103

2. Boldyrev G. G., Idrisov I. H. Influence of cyclic freezing-thawing on the strength and deformability of frozen soils: a state-of-the-art review. Engineering Geology World. 2017;3:6–17. (In Russ.)

3. Stepanov M. A., Maltseva T. V., Kraev A. N., Bartholomew L. A., Karaulov A. M. Elimination of the progressive development of uneven sedimentation of a multi-storey residential house on tape pile foundations. Internetzhurnal “Naukovedenie”. 2017;9(4):62TVN417. (In Russ.) Available at: https://naukovedenie.ru/PDF/62TVN417.pdf.

4. Enlong Liu, Yuanming Lai, Henry K. K. Wong, Jili Feng. An elastoplastic model for saturated freezing soils based on thermo-poromechanics. International Journal of Plasticity. 2018;107:246–285. https://doi.org/10.1016/j.ijplas.2018.04.007.

5. Chaochao Zhang, Dongwei Li, Changtai Luo, Zecheng Wang. Research on creep characteristics and the model of artificial Ffrozen soil. Advances in Materials Science and Engineering. 2022;(4):1–15. https://doi.org/10.1155/2022/2891673

6. Hongsheng Li, Haitian Yang, Cheng Chang, Xioutang Sun. Experimental investigation on compressive strength of frozen soil versus strain rate. Journal of Cold Regions Engineering. 2001;15(2):125–133. https://doi.org/10.1061/(ASCE)0887-381X(2001)15:2(125)

7. Chaochao Zhang, Dongwei Li, Changtai Luo, Zecheng Wang, Guanren Chen. Research on creep characteristics and the model of artificial frozen soil. Advances in Materials Science and Engineering. 2022;2022:2891673. https://doi.org/10.1155/2022/2891673

8. Junhao Chen, Han Li, Lijin Lian, Gen Lu. Comparison of mechanical properties and sensitivity of compressive and flexural strength of artificial frozen sand. Geofluids. 2022;2022:6564345. https://doi.org/10.1155/2022/7419030

9. Ma Wei, Xiaoxiao Chang. Analyses of strength and deformationof an artificially frozen soil wall in underground engineering. Cold Regions Science and Technology. 2002;34(1):11–17. https://doi.org/10.1016/S0165-232X(01)00042-8

10. Vyalov S. S. Rheology of frozen soils. Moscow: Stroyizdat; 2000. (In Russ.)

11. Sabri M. M., Shashkin K. G. Soil-structure interaction: theoretical research, in-situ observations, and practical applications. Magazine of Civil Engineering. 2023;120(4):12005. https://doi.org/10.34910/MCE.120.5

12. Anumita Mishra, Nihar Ranjan Patra. Analysis of creep settlement of pile groups in linear viscoelastic soil. International Journal for Numerical and Analytical Methods in Geomechanics. 2019;43(14):2288–2304. https://doi.org/10.1002/nag.2976

13. Jia-Cai Liu, Guo-Hui Lei, Xu-Dong Wang. One-dimensional consolidation of visco-elastic marine clay under depth-varying and time-dependent load. Marine Georesources & Geotechnology. 2015;33(4):337–347. https://doi.org/10.1080/1064119X.2013.877109

14. Wang Lei, De’An Sun, Peichao Li, Yi Xie. Semi-analytical solution for one-dimensional consolidation of fractional derivative viscoelastic saturated soils. Computers and geotechnics. 2017;83:30–39. https://doi.org/10.1016/j.compgeo.2016.10.020

15. Maltseva T. V., Nabokov A. V., Vorontsov V. V., Krizhanivskaya T. V., Minaeva A. V. Viscoelastic water-saturated soil, residual pore pressure, two-phase elastic half-space. Oil and Gas Studies. 2010;(4):94–99. (In Russ.) Available at: https://elibrary.ru/item.asp?id=16339146.

16. Bai V. F., Maltseva T. V., Nabokov A. V., Vorontsov V. V., Minaeva A. V. Theoretical basis for calculating sandreinforced masses in weak clay soils. Oil and Gas Studies. 2011;(1):102–106. (In Russ.) Available at: https://elibrary.ru/item.asp?id=16452831.

17. Melnikov R., Zazulya J., Stepanov M., Ashikhmin O., Maltseva T. OCR and POP parameters in plaxis-based numerical analysis of loaded over consolidated soils. In: 15th International scientific conference "Underground Urbanisation as a Prerequisite for Sustainable Development", Saint Petersburg, 12–15 September 2016. Procedia Engineering. 2016;165:845–852. https://doi.org/10.1016/j.proeng.2016.11.783

18. Maltseva T. V., Trefilina E. R. Modeling of the two-phase body with account of carrying abilities of the fluid phase. Matematicheskoe modelirovanie. 2004;16(11):47–57. (In Russ.) Available at: https://www.mathnet.ru/links/22401914519291b481f37248ea88830c/mm222.pdf.

19. Jie Yuan, Yuexin Gan, Jian Chen, Songming Tan, Jitong Zhao. Experimental research on consolidation creep characteristics and microstructure evolution of soft soil. Frontiers in Materials. 2023;10:1137324. https://doi.org/10.3389/fmats.2023.1137324

20. Maltsev L. E., Karpenko Yu. I. Viscoelasticity theory for civil engineers. Tyumen: Vector Buk; 1999. (In Russ.)

21. Koltunov M. A. Creep and relaxation. Moscow: Vysshaya shkola; 1976. (In Russ.)

22. Gladkov A. E., Maltseva T. V., Isakova N. P. Method for determining the mechanical characteristics of viscoelastic soils. Architecture, Construction, Transport. 2023;(4):26–33. (In Russ.) https://doi.org/10.31660/2782-232X-2023-4-26-33

23. Bezukhov N. M. Fundamentals of elasticity, plasticity, and creep theory. Moscow: Vysshaya shkola; 1968. (In Russ.)

24. Maltseva T. V., Trefilina E. R., Saltanova T. V. Deformed state of the bases buildings and structures from weak viscoelastic soils. Magazine of Civil Engineering. 2020;(3):119–130. https://doi.org/10.18720/MCE.95.11


Review

For citations:


Koreshkova E.V., Shusharin A.A., Hasanov N.M. Analytical determination of the relaxation function of viscoelastic frozen soil based on experimental data. Architecture, Construction, Transport. 2024;(3):36-43. (In Russ.) https://doi.org/10.31660/2782-232X-2024-3-36-43

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)