Development of mathematical model of oscillatory processes at turning of materials with reverse hardness distribution
https://doi.org/10.31660/2782-232X-2024-2-105-113
Abstract
For technological guarantee of the required quality indicators of the surface layer of metallic rotation body parts at finishing machining needs the correct assignment of technological modes. During finishing turning, vibrational processes have a significant (and often decisive) effect on the formation of surface roughness. It is necessary to choose such values of technological modes, which provide an acceptable level of vibration (previously it is advisable to solve this problem by modelling). Mathematical model was carried out based on the determination of the turning tool deformations under the influence of cutting forces. To determine the amplitudes of the cutter oscillations, the Mohr integral was used, and the amplitude-frequency characteristics were determined using the Duhamel integral. Cutting forces were determined taking into account the shape and nature of chip formation, the value of technological modes and processing conditions. As the material to be machined, the authors considered the cast iron with a layer hardened by diffusion alloying. Determination of input data for model was carried out directly during machining on the lathe and with the help of measurements of chip parameters. As cutting tools, we used standard cutters with mechanically fastened plates. The evaluation of the modelling results showed high convergence with the experimental results: the error in amplitude was 8.5 percent, in oscillation frequency - 12.3 percent; in general, the error did not exceed 15 percent. Thus, the developed model can be used for preliminary vibration assessment at the design stage of turning operations.
About the Authors
V. E. OvsyannikovRussian Federation
Viktor E. Ovsyannikov, D. Sc. in Engineering, Associate Professor, Professor at the Department of Mechanical Engineering Technology
Tyumen
E. M. Kuznetsova
Russian Federation
Elena M. Kuznetsova, Senior Lecturer at the Department of Automation of Production Processes
Kurgan
R. Yu. Nekrasov
Russian Federation
Roman Yu. Nekrasov, Cand. Sc. in Engineering, Head of the Department of Mechanical Engineering Technology
Tyumen
S. Yu. Titskaja
Russian Federation
Snezhana Yu. Titskaja, Intern-Assistant at the Department of Mechanical Engineering Technology
Tyumen
References
1. Suslov, A. G. (2000). Kachestvo poverkhnostnogo sloya detaley mashin. Moscow, Mashinostroenie Publ., 320 p. (In Russian). ISBN 5-217-02976-5.
2. Bez"yazychnyy, V. F. (2021). Metod podobiya v tekhnologii mashinostroeniya: monografiya. Moscow, Infrainzheneriya Publ., 356 p. (In Russian). ISBN 978-5-9729-0766-3.
3. Zakovorotnyy, V. L., Luk'yanov, A. D., Nguen, D. A., & Fam, D. T. (2008). Sinergeticheskiy sistemnyy sintez upravleniya dinamikoy metallorezhushchikh stankov s uchetom evolyutsii svyazey. Rostov-na-Donu, Don State Technical University Publ., 324 p. (In Russian). ISBN 5-7890-0278-1.
4. Altintas, Yu., Eynian, M., & Onozuka, H. (2008). Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Annals, 57(1), pp. 371-374. (In English). DOI 10.1016/j.cirp.2008.03.048.
5. Özel, T., & Zeren, E. (2007). Finite element modeling the influence of edge roundness on the stress and temperature fields induced by high-speed machining. The International Journal of Advanced Manufacturing Technology, 35(3), pp. 255-267. (In English). DOI 10.1007/s00170-006-0720-2.
6. Kalpakjian, S., & Schmid, S. (2009). Manufacturing Engineering and Technology. Publ. Pearson Education, 1197 p. (In English).
7. Suslov, A. G. (1983). Vybor, naznachenie i tekhnologicheskoe obespechenie parametrov sherokhovatosti poverkhnostey detaley mashin po GOSTu 2789-73. Bryansk, Bryansk State Technical University Publ., 83 p. (In Russian).
8. Bezyazychnyy, V. F., Timofeyev, M. V., Fomenko, R. N., & Kiselyov, E. V. (2017). Analysis of used procedures for purpose of regime conditions of cutting process. Tehnologia Metallov, (12), pp. 2-10. (In Russian).
9. Chernykh, L. G., Stepanov, S. N., & Radkevich, M. M. (2023). Raschet sistematicheskoy sostavlyayushchey pervichnogo profilya pri uchastii vershiny reztsa s radiusom, glavnoy i vspomogatel'noy rezhushchikh kromok i podachi. Innovatsionnye tekhnologii v mashinostroenii: Sbornik materialov mezhdunarodnoy nauchnotekhnicheskoy konferentsii, posvyashchennoy 55-letiyu Polotskogo gosudarstvennogo universiteta imeni Evfrosinii Polotskoy, Novopolotsk, April, 18-19, 2023. Novopolotsk, Euphrosyne Polotskaya State University of Polotsk Publ., pp. 38-41. (In Russian).
10. Saindane, G., Jakikore, A., & Umbarkar, A. (2014). Experimental investigation of vibration damping in boring operation using passive damper. International Journal of Research in Engineering & Advanced Technology, 2(3). (In English). ISSN: 2320–8791. Available at: http://www.ijreat.org/Papers%202014/Issue9/IJREATV2I3022.pdf (accessed 13.03.2024).
11. Sortino, M., Totis, G., & Prosperi, F. (2012). Development of a practical model for selection of stable tooling system configurations in internal turning. International Journal of Machine Tools and Manufacture, 61, pp. 58-70. (In English). DOI 10.1016/j.ijmachtools.2012.05.010.
12. Ovsyannikov, V. E., & Nekrasov, R. Yu. (2024). Issledovanie geometricheskikh osobennostey rel'efa sherokhovatosti, volnistosti i profilya detaley v poperechnom sechenii. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii im. D.I. Mendeleeva, posvyashchennoy 15-letiyu Instituta promyshlennykh tekhnologiy i inzhiniringa: Sbornik statey konferentsii. V 3-kh tomakh, Tyumen, November, 16–18 2023. Tyumen, Industrial University of Tyumen Publ., pp. 144-147. (In Russian).
13. Rogov, E. Yu., Ostapchuk, A. K., & Ovsyannikov, V. E. (2023). Avtomaticheskoe obespechenie tochnosti formy pri obrabotke na stankakh s ChPU. Kurgan, Kurgan State University, & Ural State University of Railway Transport Publ., 174 p. (In Russian). ISBN 978-5-4217-0652-6.
14. Dunin-Barkovskiy, I. V., & Kartashova, A. N. (1978). Izmereniya i analiz sherokhovatosti, volnistosti i nekruglosti poverkhnosti. Moscow, Mashinostroenie Publ., 232 p. (In Russian).
15. Bobrovskiy, I. N., Zibrov, P. F., Bobrovskiy, N. M., & Grechnikov, F. V. (2020). Issledovanie tekstury poverkhnosti detali "kolenchatyy val", obrabotannoy shlifovaniem i vyglazhivaniem. STIN, (6), pp. 7-10. (In Russian).
16. Chernov, Yu. T., & Zebilila, M. D. H. (2018). To the calculation of vibration isolation systems with fluid viscous dampers. Earthquake Engineering. Constructions Safety, (2), pp. 34-38. (In Russian).
17. Bunkin, N. F., & Morozov, A. N. (2011). Stokhasticheskie sistemy v fizike i tekhnike. Moscow, Bauman Moscow State Technical University Publ., 368 p. (In Russian). ISBN: 978-5-7038-3368-1.
18. Rozenberg, Yu. A. (2007). Rezanie materialov. Kurgan, Kurgan State University, & Tyumen State Oil and Gas University Publ., 294 p. (In Russian).
Review
For citations:
Ovsyannikov V.E., Kuznetsova E.M., Nekrasov R.Yu., Titskaja S.Yu. Development of mathematical model of oscillatory processes at turning of materials with reverse hardness distribution. Architecture, Construction, Transport. 2024;(2):105-113. (In Russ.) https://doi.org/10.31660/2782-232X-2024-2-105-113