Preview

Architecture, Construction, Transport

Advanced search

Effectiveness of using a slider-crank mechanism for waffle background milling

https://doi.org/10.31660/2782-232X-2024-2-96-104

Abstract

The paper presents the design of an experimental cutting tool feed drive based on a slider-crank mechanism. A feature of the technology of milling a regular waffle background pattern is the need for regular repetition of cells, usually rectangular shape. This requires the development of a tool feed mechanism that provides а high processing speed and a significant reduction in cutting forces to prevent deformation of the cell shape. The drive design presented in the work provides feed rate up to 43 m/min with cutting speed up to 942 m/min. This eliminates the exit of the mechanism out of the cell dimensions, as well as provides a significant reduction of cutting forces up to 10 N and removes the problem of using coolant (dry machining). This is a feature of the high-speed milling mode, when the feed rate and cutting speed are significantly higher than traditional ones, and the cutting depth does not exceed 1 mm. The productivity of this milling process is much higher than traditional milling modes and, in addition, it causes less heating of the part, as almost all the heat escapes with the chips. The practical significance of the development is the increase of productivity of the equipment for waffle background milling in fuel tanks from aluminium alloys due to the application of the high-speed drive based on the slider-crank mechanism. The authors offered to mount it instead of the standard spindle on large-sized milling gantry-type machines. This makes it possible to use the high-speed milling modes at cutting forces of several newtons for reducing the weight of the power and moving parts of the drive and increasing the feed rate.

About the Authors

I. N. Drozdov
JSC "Federal Research and Production Center "Progress"
Russian Federation

Igor N. Drozdov, foreman

Omsk



A. Yu. Popov
Omsk State Technical University
Russian Federation

Andrey Yu. Popov, D. Sc. in Engineering, Professor at the Department of Metal Cutting Machines and Tools

Omsk



References

1. Mikhryutin, V. V., & Sherstobitov, M. A. (2012). Metody mekhanicheskoy obrabotki listovykh obshivok planera samoletov. Vestnik RGATA imeni P. A. Solov'eva, (2(23)), pp. 279-284. (In Russian).

2. Pisarenko, A. A., & Kovalev, A. M. (2018). Mekhanoobrabatyvayushchiy tsentr modeli SVO-3500 dlya formirovaniya vafel'nogo fona na krupnogabaritnykh konstruktsiyakh izdeliy raketno-kosmicheskoy tekhniki. Vestnik NPO Tekhnomash, (2(6)), pp. 86-90. (In Russian).

3. Lizin, V. T., & Pyatkin, V. A. (1976). Proektirovanie tonkostennykh konstruktsiy. Moscow, Mashinostroenie Publ., 408 p. (In Russian).

4. Batrutdinov, R. G., & Sysoev, S. K. (2011). Tekhnologiya izgotovleniya vafel'nogo fona v obechaykakh letatel'nykh apparatov. Aktual'nye problemy aviatsii i kosmonavtiki, 1(7), pp. 7-8. (In Russian).

5. Artobolevskiy, I. I. (1975). Teoriya mekhanizmov i mashin. – Moscow, Nauka Publ., 640 p. (In Russian).

6. Dvornikov, L. T., & Bol'shakov, N. S. (2008). Teoriya krivoshipno-polzunnykh mekhanizmov : monografiya. – Novokuznetsk, NPF Publ., 138 p. (In Russian).

7. Belov, I. V., Semenov, D. V., & Belov, A. A. (2023). Crank-slide mechanism with two connecting rods. Original'nye issledovaniya, 13(8), pp. 20-27. (In Russian).

8. Chen, Yu., Sun, Yu., & Yang, D. (2017). Investigations on the dynamic characteristics of a planar slider-crank mechanism for a high-speed press system that considers joint clearance. Journal of Mechanical Science and Technology, 31(1), pp. 75-85. (In English). DOI 10.1007/s12206-016-1209-z.

9. Ha, J.-L., Fung, R.-F., Chen, K.-Yu., & Hsien, Sh.-Ch. (2006). Dynamic modeling and identification of a slider-crank mechanism. Journal of Sound and Vibration, 289(4), pp. 1019-1044. (In English). DOI 10.1016/j.jsv.2005.03.011.

10. Ibaraki, S., & Shimizu, T. (2010). A long-term control scheme of cutting forces to regulate tool life in end milling processes. Precision Engineering, 34(4), pp. 675-682. (In English). DOI 10.1016/j.precisioneng.2010.05.001.

11. Zaitsev, A. M. (2016). Razrabotka napravleniy povysheniya effektivnosti tekhnologicheskoy podgotovki proizvodstva detaley i uzlov raketno-kosmicheskoy tekhniki: Diss. kand. tekhn. nauk. 168 p. (In Russian).

12. Krivonos, E. V. (2021). Justification scheme for milling waffle background. Omsk Scientific Bulletin. Series Aviationrocket and Power Engineering, 5(3), pp. 83-90. (In Russian). DOI 10.25206/2588-0373-2021-5-3-83-90

13. Shachnev, S. Yu. (2009). Razrabotka metodov povysheniya effektivnosti tekhnologii mekhanicheskoy obrabotki detaley obolochkovogo tipa iz titanovykh splavov i martensitnostareyushchikh staley: Diss. kand. tekhn. nauk. 178 p. (In Russian).

14. Zaitsev, A. M., Shachnev, S. Yu., & Grubyi, S. V. (2020). Optimization of cutting modes when milling shell pockets with a wafer structure. Space Engineering and Technology, (3(30)), pp. 14-23. (In Russian).

15. Zheng, E., & Zhou, X. (2014). Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mechanism and Machine Theory, 74, pp. 10-30. (In English). DOI 10.1016/j.mechmachtheory.2013.11.015.

16. Mikhryutin, V. V., & Sherstobitov, M. A. (2012). Metody mekhanicheskoy obrabotki listovykh obshivok planera samoletov. Vestnik RGATA imeni P. A. Solov'eva, (2(23)), pp. 279-284. (In Russian).

17. Bahvalov, Yu. O. (eds). (2006). Nauchno-tekhnicheskie razrabotki OKB-23 - KB "Salyut". Issue 1. Moscow, Vozdushnyy transport Publ., 720 p. (In Russian). ISBN 5-88821-065-x.


Review

For citations:


Drozdov I.N., Popov A.Yu. Effectiveness of using a slider-crank mechanism for waffle background milling. Architecture, Construction, Transport. 2024;(2):96-104. (In Russ.) https://doi.org/10.31660/2782-232X-2024-2-96-104

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)