Preview

Architecture, Construction, Transport

Advanced search

Seismic protection of buildings and structures using metamaterials: current status and development prospects

https://doi.org/10.31660/2782-232X-2024-2-67-83

Abstract

Due to the compaction of urban development and increase in its number of floors, the number of studies in the field of protection of buildings and structures from seismic waves is growing in the world, as the wave seismic front in the soil mass can lead to enormous destruction and mass casualties. The most common methods of seismic protection of buildings and structures in civil engineering today are constructive and territorial methods. The first method includes a set of structural measures, among of them an important place is occupied by the use of seismic isolators – special devices inserted into the foundation and reducing inertial seismic effects on building structures. The second way is the use of various barriers in the path of seismic wave propagation. In recent years, there has been a clear trend towards finding new approaches to territorial seismic protection. The analysis of academic databases revealed a large number of studies (mostly foreign) devoted to the development of ways to protect buildings and structures from wave action using various kinds of composite structures – metamaterials. Some researchers conditionally divide these methods into two groups: the first performs the tasks of masking, when the wave front deviates and wraps around the protected object, and the second creates an artificial shadow zone where seismic waves are damped without significantly affecting buildings and structures. Since the development of seismic metamaterials is still a new but certainly promising area of research for Russian science, the purpose of this review was to systematise the available data on the methods of effective protection of buildings and structures from wave impacts.

About the Author

V. A. Mitroshin
National Research Moscow State University of Civil Engineering (NRU MGSU)
Russian Federation

Vasilii A. Mitroshin, Senior Lecturer at the Department of Theoretical and Structural Mechanics

Moscow



References

1. Pendry, J. B., Schurig, D., Smith, D. R. (2006). Controlling electromagnetic fields. Science, 312(5781), pp. 1780-1782. (In English). DOI 10.1126/science.1125907.

2. Dubinov, A. E., & Mytareva, L. A. (2010). Invisible cloaking of material bodies using the wave flow method. Uspekhi Fizicheskih Nauk, 180(5), Pp. 475-501. DOI 10.3367/ufnr.0180.201005b.0475. (In Russian).

3. Rozanov, N. N. (2008). Nevidimost': za i protiv. Priroda, (6), pp. 3-10. (In Russian).

4. Schurig, D., Pendry, J.B., & Smith, D. R. (2006). Calculation of material properties and ray tracing in transformation media. Optics Express, 14(21), pp. 9794-9804. (In English). DOI 10.1364/oe.14.009794.

5. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., & Smith, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314(5801), pp. 977-980. (In English). DOI 10.1126/science.1133628.

6. Ma, H., Qu, S., Xu, Z., Zhang, J., Chen, B., & Wang, J. (2008). Material parameter equation for elliptical cylindrical cloaks. Physical Review A – Atomic, Molecular, and Optical Physics, 77(1), pp. 1-4. (In English). DOI 10.1103/PhysRevA.77.013825.

7. Wang, W., Lin, L., Ma, J., Wang, C., Cui, J., Du, C., & Luo, X. (2008). Electromagnetic Concentrators with Reduced Material Parameters Based on Coordinate Transformation. Optics Express, 16(15), pp. 11431-11437. (In English). DOI 10.1364/oe.16.011431.

8. Luo, Y., Zhang, J., Chen, H., & Wu, B.-I. (2008). Full-wave analysis of prolate spheroidal and hyperboloidal cloaks. Journal of Physics D: Applied Physics, 41(23), 5101. (In English). DOI 10.1088/0022-3727/41/23/235101.

9. Luo Y., Zhang, J., Wu, B.-I., & Chen, H. (2008). Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator. Physical Review B - Condensed Matter and Materials Physics, (78), 125108. (In English). DOI 10.1103/PhysRevB.78.125108.

10. Kim, S. H., & Das, M. P. (2013). Artificial seismic shadow zone by acoustic metamaterials. Modern Physics Letters B, 27(20), 1350140. (In English). DOI 10.1142/S0217984913501406.

11. Colombi, A., Roux, P., Guenneau, S., Gueguen, P., & Craster, R. V. (2016). Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Scientific Reports, (6(1)), 19238. (In English). DOI 10.1038/srep19238.

12. Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2013). Experiments on seismic metamaterials: Molding surface waves. Physical Review Letters, (112), 133901. (In English). DOI 10.1103/PhysRevLett.112.133901.

13. Brûlé, S., Enoch, S., & Guenneau, S. (2020). Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters, Section A: General, Atomic and Solid State Physics, (384(1)), 126034. (In English). DOI 10.1016/j.physleta.2019.126034.

14. Walser, R. M. (2000). Metamaterials: What are they? What are they good for? APS March Meeting Abstracts, (1), pp. 5001. (In English).

15. Smith, D. R., Vier, D. C., Kroll, N., & Schultz, S. (2000). Direct calculation of permeability and permittivity for a lefthanded metamaterial. Applied Physics Letters, (77(14)), pp. 2246-2248. (In English). DOI 10.1063/1.1314884.

16. Walser, R. M. (2001). Electromagnetic metamaterials. Complex Mediums II: Beyond linear isotropic dielectrics. International Society for Optics and Photonics, (4467), pp. 1-15. (In English).

17. Strutt, J. W. (2011). On the Remarkable Phenomenon of Crystalline Reflexion described by Prof. Stokes. Scientific Papers. Cambridge Library Collection - Mathematics. Cambridge, Publ. Cambridge University Press, pp. 204- 212. (In English). DOI 10.1017/cbo9780511703980.010.

18. Mogilevsky, I. E., & Rovenko, V. V. (2014). Mathematical modeling of the cloaking method for problems of radiolocating masking. Physical Bases of Instrumentation, (3(4)), pp. 28-39. (In Russian).

19. Ohtaka, K. (1979). Energy band of photons and low-energy photon diffraction. Physical Review B, 19(10), pp. 5057-5067. (In English). DOI 10.1103/PhysRevB.19.5057.

20. Sajeev, J. (1987). Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, (58(23)), pp. 2486-2489. (In English). DOI 10.1103/PhysRevLett.58.2486.

21. Sigalas, M., Kushwaha, M. S., Economou, E. N., Kafesaki, M., Psarobas, I. E., & Steurer, W. (2005). Classical vibrational modes in phononic lattices: theory and experiment. Zeitschrift für Kristallographie - Crystalline Materials, (220(9-10)), pp. 765-809. (In English). DOI 10.1524/zkri.2005.220.9-10.765.

22. Bao, J., Shi, Z., & Xiang, H. (2012). Dynamic responses of a structure with periodic foundations. Journal of Engineering Mechanics, (138(7)), pp. 761–769. (In English). DOI 10.1061/(asce)em.1943-7889.0000383.

23. Xiang, H. J., Shi, Z. F., Wang, S. J., & Mo, Y. L. (2012). Periodic materials-based vibration attenuation in layered foundations: experimental validation. Smart Materials and Structures, (21(11)), 112003. (In English). DOI 10.1088/0964-1726/21/11/112003.

24. Cheng, Z., & Shi, Z. (2013). Novel composite periodic structures with attenuation zones. Engineering Structures, (56), pp. 1271-1282. (In English). DOI 10.1016/j.engstruct.2013.07.003.

25. Cheng, Z., Shi, Z., Mo, Y. L., & Xiang, H. (2013). Locally resonant periodic structures with low-frequency band gaps. Journal of Applied Physics, (114), 033532. (In English). DOI 10.1063/1.4816052.

26. Huang, J., & Shi, Z. (2013). Application of periodic theory to rows of piles for horizontal vibration attenuation. International Journal of Geomechanics, (13(2)), pp. 132-142. (In English). DOI 10.1061/(asce)gm.1943-5622.0000193.

27. Yan, Y., Laskar, A., Cheng, Z., Menq, F., Tang, Y., Mo, Y. L., & Shi, Z. (2014). Seismic isolation of two dimensional periodic foundations. Journal of Applied Physics, (116(4)). (In English). DOI 10.1063/1.4891837.

28. Yan, Y., Cheng, Z., Menq, F., Mo, Y. L., Tang, Y., & Shi, Z. (2015). Three dimensional periodic foundations for base seismic isolation. Smart Materials and Structures, (24(7)). (In English). DOI 10.1088/0964-1726/24/7/075006.

29. Miniaci, M., Krushynska, A., Bosia, F., & Pugno, N. M. (2016). Large scale mechanical metamaterials as seismic shields. New Journal of Physics, (18(8)), 083041. (In English). DOI 10.1088/1367-2630/18/8/083041.

30. Krödel, S., Thomé, N., & Daraio, C. (2015). Wide band-gap seismic metastructures. Extreme Mechanics Letters, (4), pp. 111-117. (In English). DOI 10.1016/j.eml.2015.05.004.

31. Dertimanis, V. K., Antoniadis, I. A., & Chatzi, E. N. (2016). Feasibility analysis on the attenuation of strong ground motions using finite periodic lattices of mass-in-mass barriers. Journal of Engineering Mechanics, (142(9)), pp. 1–10. (In English). DOI 10.1061/(asce)em.1943-7889.0001120.

32. Wagner, P.-R., Dertimanis, V. K., Chatzi, E. N., & Beck, J. L. (2018). Robust-to-uncertainties optimal design of seismic metamaterials. Journal of Engineering Mechanics, (144(3)), pp. 1-17. (In English). DOI 10.1061/(asce)em.1943-7889.0001404.

33. Cacciola, P., & Tombari, A. (2015). Vibrating barrier: A novel device for the passive control of structures under ground motion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, (471), 2179. (In English). DOI 10.1098/rspa.2015.0075.

34. Palermo, A., Krödel, S., Marzani, A., & Daraio, C. (2016). Engineered metabarrier as shield from seismic surface waves. Scientific Reports, (6(1)), 39356. (In English). DOI 10.1038/srep39356.

35. Haupt, R. W., Liberman, V., Rothschild, M., & Doll, C. G. (2018). Seismic cloaking protection from earthquakes. 2018 IEEE International Symposium on Technologies for Homeland Security (HST), pp. 1-7. (In English). DOI 10.1109/THS.2018.8574152.

36. Geng, Q., Zhu, S., & Chong, K. P. (2018). Issues in design of one-dimensional metamaterials for seismic protection. Soil Dynamics and Earthquake Engineering, (107(14)), pp. 264–278. (In English). DOI 10.1016/j.soildyn.2018.01.028.

37. Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2017). Flat lens effect on seismic waves propagation in the subsoil. Scientific Reports, (7(1)), 18066. (In English). DOI 10.1038/s41598-017-17661-y.

38. Brûlé, S., Javelaud, E. H., Enoch, S., & Guenneau, S. (2013). Seismic metamaterial: how to shake friends and influence waves? arXiv, 1301.7642. (In English). DOI 10.58550/arXiv.1301.7642.

39. Colombi, A., Colquitt, D., Roux, P., Guenneau, S., & Craster, R. V. (2016). A seismic metamaterial: The resonant metawedge. Scientific Reports, (10(6)), 27717. (In English). DOI 10.1038/srep27717.

40.


Review

For citations:


Mitroshin V.A. Seismic protection of buildings and structures using metamaterials: current status and development prospects. Architecture, Construction, Transport. 2024;(2):67-83. (In Russ.) https://doi.org/10.31660/2782-232X-2024-2-67-83

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)