Preview

Architecture, Construction, Transport

Advanced search

Wastewater deodorization methods at wastewater treatment plants

https://doi.org/10.31660/2782-232X-2021-2-40-49

Abstract

   The article presents a review of existing methods for reducing gases’ emissions with specific unpleasant odors during the process of wastewater and sludge treatment at wastewater treatment plants. The review is based on the Russian and foreign research in the period from 2000 to 2020. The article considers advantages and disadvantages of the main methods for reducing the concentration of pollutants in the air near treatment plants.

About the Authors

E. S. Glushchenko
Industrial University of Tyumen
Russian Federation

Ekaterina S. Glushchenko, Assistant

Department of Water Supply and Sanitation

Tyumen



A. A. Kadyseva
Industrial University of Tyumen
Russian Federation

Anastasia A. Kadyseva, Doctor of Biology, Professor

Department of Water Supply and Sanitation

Tyumen



References

1. Pinto, M. M. S. C., Marinho-Reis, P., Almeida, A., Pinto, E., Neves, O., Inacio, M., … Moreira, P. I. (2019). Links between cognitive status and trace element levels in hair for an environmentally exposed population: a case study in the surroundings of the estarreja industrial area. International journal of environmental research and public health, (16) pp. 1-20. (In English). DOI: 10.3390/ijerph16224560

2. Byliński, H., Gębicki, J., & Namieśnik, J. (2009). Evaluation of health hazard due to emission of volatile organic compounds from various processing units of wastewater treatment plant. International journal of environmental research and public health, (16), pp. 1-16. (In English). DOI: 10.3390/ijerph16101712

3. Widiana, D. R., Wang, Y.-F., You, S.-J., Yang, H.-H., Wang, L.-C., Tsai, J.-H., & Chen, H.-M. (2019). Air pollution profiles and health risk assessment of ambient volatile organic compounds above a municipal wastewater treatment plant, Taiwan. Aerosol and air quality research, (19), pp. 375-382. (In English). DOI: 10.3390/ijerph16224560

4. Xie, T., & Wang, C. (2011). Impact of different factors on greenhouse gas generation by wastewater treatment plants in China. International Symposium on Water Resource and Environmental Protection, 20-22 May, Xi'an, China, pp. 1448-1451. (In English). DOI: 10.1109/ISWREP.2011.5893297. Available at: https://ieeexplore.ieee.org/document/5893297 (date of application : 05. 12. 2020).

5. Lewkowska, P., Cieslik, B., Dymerski, T., Konieczka, P., & Namiesnik, J. (2016). Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental research, (151), pp. 573-586. (In English). DOI: 10.1016/j.envres.2016.08.030

6. Burlingame, G. A. Suffet, I. H., Khiari, D., & Bruchet, A. L. (2004). Development of an odor wheel classification scheme for wastewater. Water science and technology, (49), pp. 201-209. (In English).

7. Khan, F. I., & Ghoshal, A. Kr. (2000). Removal of volatile organic compounds from polluted air. Journal of loss prevention in the process industries, (13), pp. 527-545. (In English). DOI: 10.1016/S0950-4230(00)00007-3

8. Chai, C., Zhang, D., Yu, Y., Feng, Y., & Wong, M. S. (2015). Carbon footprint analyses of mainstream wastewater treatment technologies under different sludge treatment scenarios in China. Water, (7), pp. 918-938. (In English). DOI: 10.3390/w7030918

9. Monteith, H. D. Sahely, H. R., MacLean, H. L., & Bagley, D. M. (2005). A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water environment research, (77), pp. 390-403. (In English). DOI: 10.2175/106143005X51978

10. Yapıcıoğlu, P. (2021). Minimization of greenhouse gas emissions from extended aeration activated sludge process. Water practice and technology, (16), pp. 96-107. (In English). DOI: 10.2166/wpt.2020.100

11. Bazhenov, V. I., & Koroleva, E. A. (2014). Varianty tekhnicheskikh resheniy po udaleniyu zapakha stochnykh vod. Scientific and Technical Volga Region Bulletin, (5), pp. 104-107. (In Russian).

12. Orlov, V. A., Saimullov, A. V., & Melnik, O. V. (2020). A study of the process of malodor formation in sewer networks and analysis of methods for its elimination. Vestnik MGSU, 15(3), pp. 104-107. (In Russian). DOI: 10.22227/1997-0935.2020.3.409-431

13. Malysheva, A. A. (2015). Biofil'tratsiya kak sposob dezodoratsii gazovykh vybrosov pri rabote stantsiy aeratsii. Santekhnika, (3), pp. 40-43. (In Russian).

14. Ren, B., Zhao, Y., Lyczko, N., & Nzihou, A. (2019). Current status and outlook of odor removal technologies in wastewater treatment plant. Waste and biomass valorization, (10), pp. 1443-1458. (In English). DOI: 10.1007/s12649-018-0384-9

15. Tsang, Y. F., Wang, L., & Chong, H. (2015). Effects of high ammonia loads on nitrogen mass balance and treatment performance of a biotrickling filter. Process safety environmental protection, (98), pp. 253-260. (In English). DOI: 10.1016/j.psep.2015.08.008

16. Tsang, Y. F., Wang, L., & Chua, H. (2015). Simultaneous hydrogen sulphide and ammonia removal in a biotrickling filter: crossed inhibitory effects among selected pollutants and microbial community change. Chemical engineering journal, (281), pp. 253-260. (In English). DOI: 10.1016/j.cej.2015.06.107

17. Talaiekhozani, A., Bagheri, M., Goli, A., & Khoozani, M. R. T. (2016). An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. Journal of environmental management, (170), pp. 186-206. (In English). DOI: 10.1016/j.jenvman.2016.01.021

18. Lebrero, R., Rangel, M. G. L., & Muñoz, R. (2013). Characterization and biofiltration of a real odorous emission from wastewater treatment plant sludge. Journal of environmental management, (116), pp. 50-57. (In English). DOI: 10.1016/j.jenvman.2012.11.038

19. Gil, R. R. Ruiz, B., Lozano, M. S., Martin, M. J., & Fuente, E. (2014). VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chemical engineering journal, (245), pp. 80-88. (In English). DOI: 10.1016/j.cej.2014.02.012

20. Lillo-Ródenas, M. A., Juan-Juan, J., Cazorla-Amorós, D., & Linares-Solano, A. (2004). About reactions occurring during chemical activation with hydroxides. Carbon, (42), pp. 1371-1375. (In English). DOI: 10.1016/j.carbon.2004.01.008

21. Karageorgos, P., Latos, M., Lazaridis, M., & Kalogerakis, N. (2018). Ustranenie nepriyatnykh zapakhov ot gorodskikh ochistnykh sooruzheniy kanalizatsii. Nailuchshie dostupnye Tekhnologii Vodosnabzheniya i Vodootvedeniya, (1), pp. 40-43. (In Russian).

22. Aziz, A., & Kim, K. S. (2017). Adsorptive volatile organic removal from air onto NaZSM-5 and HZSM-5: kinetic and equilibrium studies. Water, air, & soil pollution, (228), pp. 1-11. (In English). DOI: 10.1007/s11270-017-3497-z

23. Charron, I., Feliers, C., Couvert, A., Laplanche, A., Patria, L., & Requieme, B. (2004). Use of hydrogen peroxide in scrubbing towers for odor removal in wastewater treatment plants. Water science and technology, (50), pp. 267-274. (In English). DOI: 10.2166/wst.2004.0281

24. Chen, W.-H., Lin, Y.-C., Lin, J.-H., Yang, P.-M., & Jhang, S.-R. (2014). Treating odorous and nitrogenous compounds from waste composting by acidic chlorination followed by alkaline sulfurization. Environmental engineering science, (31), pp. 583-592. (In English). DOI: 10.1089/ees.2013.0272

25. Ryltseva, Yu., & Orlov, V. (2020). Measures to prevent sewerage odor emissions into the atmosphere. IOP conference series : materials science and engineering, (869). (In English). DOI: 10.1088/1757-899X/869/4/042002. Available at: https://iopscience.iop.org/article/10.1088/1757-899X/869/4/042002/meta (date of application : 10. 02. 2021).


Review

For citations:


Glushchenko E.S., Kadyseva A.A. Wastewater deodorization methods at wastewater treatment plants. Architecture, Construction, Transport. 2021;(2):40-49. (In Russ.) https://doi.org/10.31660/2782-232X-2021-2-40-49

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)