Preview

Architecture, Construction, Transport

Advanced search

Increasing the reliability of reinforced concrete frames of multistorey buildings

https://doi.org/10.31660/2782-232X-2024-2-42-55

Abstract

The aim of the numerical research was to develop a method to improve the reliability of multistorey buildings with monolithic reinforced concrete frames. The method was based on the analysis of the total area of possible slab destruction due to emergencies and failure of individual building elements located in different places in the plan and in height. To analyze the reliability of spatial reinforced concrete frames according to the principle of single failure of a separate load-bearing structure, we introduced the concept of failure area coefficient. It allowed us to estimate the failure effect of a load-bearing key element of the building on the total failure area of the building slabs. In spatial frame structures of multistorey buildings with reinforced concrete frame, the key elements of the structural system are columns, pylons, collars, beams and other elements that ensure the overall stability of the building. Increasing the overall reliability of the frame building suggest the introducing an additional reliability coefficient of survivability depending on the failure area factor. In addition, we proposed an algorithm for analyzing and rejection of unsuccessful structural systems of monolithic reinforced concrete frame buildings based on the evaluation of excessively high ratios of building failure area. We analyzed the structural systems on the example of two constructed multistorey residential and public buildings with monolithic reinforced concrete frames.

About the Authors

A. P. Malyshkin
Industrial University of Tyumen
Russian Federation

Aleksandr P. Malyshkin, Cand. Sc. in Engineering, Associate Professor, Associate Professor at the Department of Building Structures

Tyumen



A. V. Esipov
Industrial University of Tyumen
Russian Federation

Andrei V. Esipov, Cand. Sc. in Engineering, Associate Professor at the Department of Building Structures

Tyumen



M. A. Esipov
Industrial University of Tyumen
Russian Federation

Mixail A. Esipov, Bachelor

Tyumen



References

1. Kudishin, Yu. I., & Drobot, D. Yu. (2008). K voprosu o zhivuchesti stroitel'nykh konstruktsiy. Stroitel'naya mekhanika i raschet sooruzheniy, (2(217)), pp. 36-43. (In Russian).

2. Kudishin, Yu. I., & Drobot, D. Yu. (2009). Metodika rascheta stroitel'nykh konstruktsiy na edinichnuyu zhivuchest'. (In Russian). Available at: http://cdn.scipeople.ru/materials/3970/статья_исп_5.pdf (accessed 12.03.2024).

3. Kudishin, Yu. I., & Drobot, D. Yu. (2009). Building structure survivability. Metal Constructions, 15(1), pp. 59-71. (In Russian).

4. Travusн, V. I., Kolchunov, V. I., & Klyueva, N. V. (2015). Some directions of development of survivability theory of structural systems of buildings and structures. Industrial and Civil Engineering, (3), рр. 4-11. (In Russian).

5. Travush, V. I., & Fedorova, N. V. (2017). Survivability parameter calculation for framed structural systems. Russian Journal of Building Construction and Architecture, (1), pp. 6-14. (In Russian).

6. Klyueva, N. V., & Androsova, N. B. (2009). K postroeniyu kriteriev zhivuchesti korrozionno povrezhdaemykh zhelezobetonnykh konstruktivnykh sistem. Stroitel'naya mekhanika i raschet sooruzheniy, (1(222)), pp. 29-34. (In Russian).

7. Klyueva, N. V., & Vetrova, O. A. (2006). K otsenke zhivuchesti zhelezobetonnykh ramno-sterzhnevykh konstruktivnykh sistem pri vnezapnykh zaproektnykh vozdeystviyakh. Industrial and Civil Engineering, (11), pp. 56-57. (In Russian).

8. Tamrazyan, A. G. (2010). Resurs zhivuchesti – osnovnoy kriteriy proektnykh resheniy vysotnykh zdaniy. Housing Construction, (1), pp. 15-18. (In Russian).

9. Kolchunov, V., & Fedorova, N. (2018). Current problems of reinforced concrete structural systems survivability at emergency impacts. Bulletin of the Scientific Research Center "Construction", (1(16)), рр. 115-119. (In Russian).

10. D'yakov, I. M. (2011). Predposylki i nekotorye aspekty primeneniya teorii zhivuchesti k otsenke raboty podpornykh sten na zapredel'nye nagruzki. Stroitel'stvo i tekhnogennaya bezopasnost': Sbornik nauchnykh trudov. Simferopol', NAPKS Publ., 39, рр. 29-34. (In Russian).

11. D'yakov, I. M. (2013). Otsenka zhivuchesti svaynykh uderzhivayushchikh konstruktsiy. Stroitel'stvo, materialovedenie, mashinostroenie: Sbornik nauchnykh trudov. Dnepropetrovsk, Prydniprovska State Academy of Civil Engineering and Architecture Publ., 69, pp. 169-174. (In Russian).

12. Nazarov, Y. P., Gorodetsky, A. S., & Simbirkin, V. N. (2009). About a problem of survivability support of building structures subjected to emergency actions, (4(225)), pp. 5-9. (In Russian).

13. Aydemirov, K. R. (2010). Sostoyanie problemy progressiruyushchego razrusheniya zdaniy i sooruzheniy, klassifikatsiya zadach i podkhody k ikh resheniyu. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskie nauki, (1), 13 p. (In Russian).

14. Bondarenko, V. M., & Kolchunov, V. I. (2013). The concept and directions of development of the theory of structural safety of buildings and structures under the influence of force and environmental factors. Industrial and Civil Engineering, (2), pp. 28-31. (In Russian).

15. Telichenko, V. I., & Roytman, V. I. (2012). Obespechenie stoykosti zdaniy i sooruzheniy pri kombinirovannykh osobykh vozdeystviyakh s uchastiem pozhara – bazovyy element sistemy kompleksnoy bezopasnosti. Nauka i bezopasnost'. (In Russian). Available at: https://www.pamag.ru/pressa/mtsuz-cs (accessed 10.02.2024).

16. Roytman, V. M. (2014). Progressiruyushchee obrushenie vysotnykh zdaniy: inzhenernye aspekty sobytiy 11 sentyabrya 2001 goda. Predotvrashchenie avariy zdaniy i sooruzheniy. (In Russian). Available at: https://prevdis.ru/progressiruyushhee-obrushenie-vysotnyh-zdanij-inzhenernye-aspekty-sobytij-11-sentyabrya-2001-goda/ (accessed 10.02.2024).

17. Almazov, V. O., & Kao Zuy, K. (2013). Dinamika progressiruyushchego razrusheniya monolitnykh mnogoetazhnykh karkasov. Moscow, ASV Publ., 128 p. (In Russian).

18. Bao, Y. Kunnath, S. K., El-Tawil, S., & Lew, H. S. (2008). Macromodel-based simulation of progressive collapse: reinforced concrete frame structures. Journal of Structural Engineering, 134(7), pp. 1079-1091. (In English).

19. Lew, H. S., Bao, Y., Sadek, F. & Main, J. A. (2011). An experimental and computational study of reinforced concrete assemblies under a column removal scenario. NIST Technical Note 1720. (In English).

20. Mosalam, K. M. (2008). Modeling progressive collapse in reinforced concrete framed structures. Proceedings of the 14th World Conference on Earthquake Engineering. (In English). Available at: https://invenio.itam.cas.cz/record/11064?ln=en (accessed 01.02.2024).

21. Meng, B., Hao, J., Zhong, W., Tan, Z., & Duan, S. (2020). Improving collapse-resistance performance of steel frame with openings in beam web. Structures, (27), рр, 2156-2169. (In English).

22. Malyshkin, A. P., & Esipov, A. V. (2014). Experience of design of wide-span covering taking into account prevention of progressive collapse. Bulletin of the Volgograd State University of Architecture and Civil Engineering, (38(57)), рр. 40-48. (In Russian).

23. Alekseeva, A. A., & Esipov, A. V. (2018). Analiz stroitel'nykh norm dlya proektirovaniya bol'sheproletnykh zdaniy s uchetom nedopushcheniya progressiruyushchego obrusheniya. Energosberezhenie i innovatsionnye tekhnologii v toplivno-energeticheskom komplekse: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov, molodykh uchenykh i spetsialistov, December, 22. Tyumen, Industrial University of Tyumen, 1, pp. 48-52. (In Russian).

24. Voloshchuk, D. A., & Esipov, A. V. (2018). Normativnye trebovaniya pri proektirovanii vysotnykh zdaniy s uchetom soblyudeniya trebovaniy progressiruyushchego obrusheniya. Energosberezhenie i innovatsionnye tekhnologii v toplivno-energeticheskom komplekse: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii studentov, aspirantov, molodykh uchenykh i spetsialistov, December, 22. Tyumen, Industrial University of Tyumen, 1, pp. 78-81. (In Russian).

25. Esipov, A. V., & Alekseeva, A. A. (2018). Raschet progonov s uchetom nedopushcheniya progressiruyushchego obrusheniya shatra pokrytiya zdaniya so stal'nym karkasom. Akademicheskij Vestnik URALNIIPROEKT RAASN, (4(39)), pp. 89-93. (In Russian).


Review

For citations:


Malyshkin A.P., Esipov A.V., Esipov M.A. Increasing the reliability of reinforced concrete frames of multistorey buildings. Architecture, Construction, Transport. 2024;(2):42-55. (In Russ.) https://doi.org/10.31660/2782-232X-2024-2-42-55

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)