Issues of application of modern regulatory documents for the calculation of transportation structures
https://doi.org/10.31660/2782-232X-2024-1-116-122
Abstract
About 400 normative documents were developed in the field of transportation construction, but the correctness and relevance of some of them is questionable. The lack of a unified terminology, the presence of contradictions and the increasing volume of documentation significantly complicate its use. In addition to general disadvantages, there are a number of private problems. For example, the authors point out the incorrect use of the limit states methodology for the calculation of structures, since this methodology considers limit (extreme) loads, and the regularities of the real behavior of the structure at lower levels of loads are unknown. In addition, the calculation according to limit states methodology does not take into account durability (it is not defined). When calculating using this methodology for the action of only loads with other unknown operating influences, the limit state is realized by reaching a certain limit value by this load. In reality, the limit state may occur due to changes in the shape of the structure, dimensions of cross-sections of structural elements and, more often, due to degradation of its material properties under the influence of service conditions. For the calculation of structures, it is necessary to apply the deformation approach more widely. According to it, both strength and deformation problems of structural calculation are correctly interrelated, and their hypotheses do not conflict with each other.
About the Authors
I. G. OvchinnikovRussian Federation
Igor G. Ovchinnikov, D. Sc. in Engineering, Professor, Professor at the Basic Department of JSC "Mostostroy-11" in Industrial University of Tyumen; Professor at the Department of Highways and Bridges in Perm National Research Polytechnic University
Tyumen
I. I. Ovchinnikov
Russian Federation
Ilya I. Ovchinnikov, Cand. Sc. in Engineering, Associate Professor, Associate Professor at the Basic Department of JSC ″Mostostroy-11″
Tyumen
B. B. Zhanaliev
Russian Federation
Bekzat B. Zhanaliev, Postgraduate at the Department of Construction Mechanics
Tyumen
N. B. Kudaibergenov
Kazakhstan
Nurlan B. Kudaibergenov, D. Sc. in Engineering, Professor, Professor at the Department of Construction
Astana
References
1. Ovchinnikov, I. G., Valiev, Sh. N., & Ovchinnikov, I. I. (2023). Vo izbezhanie oshibok. Dorozhnaya Derzhava, (120), pp. 28-32. (In Russian).
2. Matveev, S. A., Krasnoshchekov, Yu. V., Kadisov, G. M., Martynov, E. A., & Malofeyev, A. G. (2019). Analysis of developed terminology while designing the road pavements for strength. Advanced Science and Technology for Highways, (3(89)), pp. 37-39. (In Russian).
3. Gordeev, V. N. Lantukh-Lyashchenko, A. I. Pashinskiy, V.A. Perel'muter, A. V., & Pichugin, S. F. (2007). Nagruzki i vozdeystviya na zdaniya i sooruzheniya. Moscow, ASV Publ., 482 p. (In Russian).
4. Ratkin, V. V., & Kononovich, V. I. (2000). Model' deformirovaniya i raschet szhimaemogo konstruktivnogo zhelezobetonnogo elementa, podvergayushchegosya vozdeystviyu agressivnoy khloridsoderzhashchey sredy. Problemy prochnosti elementov konstruktsiy pod deystviem nagruzok i rabochikh sred: mezhvuzovskiy nauchnyy sbornik, Saratov, pp. 58-64. (In Russian).
5. Ovchinnikov, I. G., Krivtsov, A. V., & Skachkov, Yu. P. (2002). Vliyanie khloridsoderzhashchikh sred na prochnost' i dolgovechnost' plastin na uprugom osnovanii. Penza, PSAASE Publ., 214 p. (In Russian).
6. Baykov, V. N. (1981). Raschet izgibaemykh elementov s uchetom eksperimental'nykh zavisimostey mezhdu napryazheniyami i deformatsiyami dlya betona i vysokoprochnoy armatury. Izvestiya vuzov. Stroitel'stvo i arkhitektura, (5), pp. 26-32. (In Russian).
7. Garibov, R. B. (2003). Soprotivlenie zhelezobetonnykh elementov konstruktsiy vozdeystviyu agressivnykh sred. Saratov, Saratov State Technical University Publ. (In Russian).
8. Marinin, A. N., Garibov, R. B., & Ovchinnikov, I. G. (2008). Modelirovanie napryazhenno-deformirovannogo sostoyaniya zhelezobetonnykh elementov konstruktsiy v usloviyakh khloridnoy korrozii i karbonizatsii. Saratov, «Ritsa» Publ., 296 p. (In Russian).
9. Polak, A. F. (1986). Osnovy modelirovaniya korrozii zhelezobetona. Ufa, Ufa Oil Institute Publ., 69 p. (In Russian).
10. Polak, A. F. (1986). Modelirovanie korrozii zhelezobetona i prognozirovanie ego dolgovechnosti. Korroziya i zashchita ot korrozii (Itogi nauki i tekhniki VINITI AN SSSR), 12, pp. 136-184. (In Russian).
11. Vasil'ev, A. I., & Podval'nyy, A. M. (2002). Prognoz korrozii armatury zhelezobetonnykh konstruktsiy avtodorozhnykh mostov v usloviyakh khloridnoy agressii i karbonizatsii. Beton i zhelezobeton, (6), pp. 27-32. (In Russian). Available at: https://science.totalarch.com/magazine/concrete/concrete_2002_06.pdf (accessed 07.02.2024).
12. Pukhonto, L. M. (2019). Dolgovechnost' zhelezobetonnykh konstruktsiy inzhenernykh sooruzheniy (silosov, bunkerov, rezervuarov, vodonapornykh bashen, podpornykh sten), Moscow, ASV Publ., 424 p. (In Russian).
13. Ovchinnikov, I. I., & Ovchinnikov, I. G. (2023). Modelirovanie i optimal'noe proektirovanie kruglykh plastinok, vzaimodeystvuyushchikh s agressivnymi sredami. Tyumen, Industrial University of Tyumen, 198 p. (In Russian).
14. Mezhnyakova, A. V., Ovchinnikov, I. G., & Skachkov, Yu. P. (2011). Veroyatnostnyy raschet zhelezobetonnykh elementov konstruktsiy s uchetom vozdeystviya khloridsoderzhashchikh sred. Penza, Penza State University Publ., 188 p. (In Russian).
15. Geniev, G. A., Kolchunov, V. I., Klyueva, N. V., Nikulin, A. I., & Pyatikrestovskiy, K. P. (2004). Prochnost' i deformativnost' zhelezobetonnykh konstruktsiy pri zaproektnykh vozdeystviyakh. Moscow, ASV Publ., 215 p. (In Russian).
Review
For citations:
Ovchinnikov I.G., Ovchinnikov I.I., Zhanaliev B.B., Kudaibergenov N.B. Issues of application of modern regulatory documents for the calculation of transportation structures. Architecture, Construction, Transport. 2024;(1):116-122. (In Russ.) https://doi.org/10.31660/2782-232X-2024-1-116-122