Preview

Architecture, Construction, Transport

Advanced search

Hydraulic calculation of the pipeline with dispersed discharge of brine into the water area

https://doi.org/10.31660/2782-232X-2024-1-68-78

Abstract

When producing water using desalination technologies, significant volumes of highly concentrated brines are formed. The solution of the problem of wastes recycling is an important global issue for water protection organizations, and the studies of the last decade confirm this. The article discusses an environmentally friendly method of dispersed uniform brine discharge into the water area, presents the developed technical solution and describes the principle of its operation. As an example, the authors calculate the hole diameters of the distribution pipeline for uniform brine discharge along the length. We calculated the radius and the scattering jet rate at a given distance from the hole in the distribution pipeline. The difference in brine salt concentrations at a depth of 20 m from the discharge point between the background concentration in the sea and the salt concentration was found to be from 0.439 % to 0.524 % along the length of the discharge pipeline. Dissolution of brines to safe concentrations becomes even more intense in the presence of sea currents. The research results can be used in the design and operation of such systems.

About the Authors

V. V. Mironov
Industrial University of Tyumen
Russian Federation

Viktor V. Mironov, D. Sc. in Engineering, Professor, Professor at the Department of Engineering Systems and Structures

Tyumen



Yu. A. Ivanyushin
Industrial University of Tyumen
Russian Federation

Yuriy A. Ivanyushin, Cand. Sc. in Engineering, Associate Professor at the Department of Engineering Systems and Structures

Tyumen



D. A. Suglobov
Industrial University of Tyumen
Russian Federation

Daniil A. Suglobov, Postgraduate

Tyumen



D. V. Mironov
LLC "ELECTRORAM"
Russian Federation

Dmitry V. Mironov, Cand. Sc. in Engineering, Associate Professor, Lead Engineer in LLC "ELECTRORAM"

Tyumen



A. A. Kadyseva
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

Anastasiya A. Kadyseva, D. Sc. in Biology, Assosiate Professor, Professor at the Department of Agricultural Water Supply, Sanitation, Pumps and Pumping Stations

Moscow



E. A. Erofeev
Industrial University of Tyumen
Russian Federation

Evgeniy A. Erofeev, Senior Lecturer at the Department of Engineering Systems and Structures

Tyumen



References

1. Panagopoulos, A. & Haralambous, K.-J. (2020). Minimal liquid discharge (MLD) and zero liquid discharge (ZLD) strategies for wastewater management and resource recovery – Analysis, challenges and prospects. Journal of environmental chemical engineering, 8(5), pp. 104418. Available at: https://www.sciencedirect.com/science/ article/pii/S2213343720307673 (accessed 22.10.2023). (In English). DOI 10.1016/j.jece.2020.104418.

2. YuNEP: protsess opresneniya morskoy i okeanskoy vody dolzhen byt' bezopasnym dlya okruzhayushchey sredy. Available at: https://news.un.org/ru/story/2021/01/1394322 (accessed 30.10.2023). (In Russian).

3. Grankin, Yu. Ya., Tumlert, V. A., Tumlert, E. V., & Gritsenko, N. V. (2015). Brine utilization at desalination of salt-water getting industrial salt and fertilizers. Science and world, 8-1(24), pp. 32-36. (In Russian).

4. Biryuk, V. V., Anisimov, M. Yu., Gorshkalev, P. A., Teplykh, S. Yu., & Shershakova, A. A. (2019). Obtaining of drinkable water for neighbourhoods of Black Sea region. Journal of international academy of refrigeration, (4), pp. 26-31. (In Russian). DOI 10.17586/1606-4313-2019-18-4-26-31.

5. Sisma-Ventura, G., Belkin, N., Rubin-Blum, M., Jacobson, Y., Hauzer, H., Bar-Zeev E., & Rahav, E. (2022) Discharge of polyphosphonate-based antiscalants via desalination brine: impact on seabed nutrient flux and microbial activity. Environmental Science & Technology, 56 (18), pp. 13142–13151. Available at: https://pubs.acs.org/doi/ abs/10.1021/acs.est.2c04652 (accessed 25.11.2023). (In English). DOI: 10.1021/acs.est.2c04652.

6. Omerspahic, M., Al-Jabri, H., Siddiqui, S. A., & Saadaoui, I. (2022) Characteristics of desalination brine and its impacts on marine chemistry and health, with emphasis on the Persian/Arabian Gulf: a review. Frontiers in Marine Science, 9, p. 845113. Available at: https://www.frontiersin.org/articles/10.3389/fmars.2022.845113/full (accessed 25.11.2023). (In English). DOI 10.3389/fmars.2022.845113.

7. Backer, S. N., Bouaziz, I., Kallayi, N., Thomas, R. T., Preethikumar, G., Takriff, M. S., Laoui, T., & Atieh, M. A. (2022). Review: brine solution: current status, future management and technology development. Sustainability, (14(11)), pp. 6752. Available at: https://www.mdpi.com/2071-1050/14/11/6752 (accessed 25.11.2023). (In English). DOI 10.3390/su14116752.

8. Petersen, K. L., Heck, N., Requero, B. G., Potts, D., Hovagimian, A., & Paytan, A. (2019). Biological and physical effects of brine discharge from the Carlsbad desalination plant and implications for future desalination plant constructions. Water, (11(2)), pp. 208. Available at: https://www.mdpi.com/2073-4441/11/2/208 (accessed 22.11.2023). (In English). DOI 10.3390/w11020208.

9. Petersen, K. L., Paytan, A., Rahav, E., Levy, O., Silverman, J., Barzel, O., Potts, D., & Bar-Zeev, E. (2018). Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba – Potential effects from desalination plants. Water Research, 144, pp. 183-191. Available at: https://www.sciencedirect.com/science/article/abs/pii/ S0043135418305414 (accessed 27.11.2023). (In English). DOI 10.1016/j.watres.2018.07.009.

10. Belkin, N., Rahav, E., Elifantz, H., Kress, N., & Berman-Frank, I. (2017). The effect of coagulants and antiscalants discharged with seawater desalination brines on coastal microbial communities: A laboratory and in situ study from the southeastern Mediterranean. Water Research, 110, pp. 321-331. Available at: https://www.sciencedirect.com/ science/article/abs/pii/S0043135416309472 (accessed 27.11.2023). (In English). DOI 10.1016/j.watres.2016.12.013.

11. Sigora, G. A., Nichkova, L. A., Khomenko, T. Yu., Biryuk, V. V., Shimanova, A. B., & Urlapkin, V. V. (2017). Review of methods of processing of rassols generated from the work of distillation plants. Uspekhi sovremennoy nauki, 1(12), pp. 140-146. (In Russian).

12. Danoun, R. (2007). Desalination Plants: potential impacts of brine discharge on marine life. Available at: https:// www.ccc.tas.gov.au/wp-content/uploads/2018/11/Apx-22-Desalination-Plants-Uni-Sydney-Brine-DischargeMarine-Env-Impact.pdf (accessed 22.10.2023). (In English).

13. Elsaie, Y., Ismail, S., Soussa, H., Gado, M., & Balah, A. (2023). Water desalination in Egypt; literature review and assessment. Ain Shams Engineering Journal, 14(7), pp. 101998. Available at: https://www.sciencedirect.com/ science/article/pii/S2090447922003094 (accessed 25.11.2023). (In English). DOI 10.1016/j.asej.2022.101998.

14. Vinokurov, Yu. I., Puzanov, A. V., Bezmaternykh, A. M., Atavin, A. A., Zinoviev, A. T., Kirillov, V. V., … Yanigina, L. V. (2012). Sovremennoe sostoyanie vodnykh resursov i funktsionirovanie vodokhozyaystvennogo kompleksa basseyna Obi i Irtysha : monograph. Novosibirsk, Publishing house Siberian Branch Russian Academy of Sciences Publ., 236 p. (In Russian).

15. Fedorov, S. V., Telyatnikova, A. M., Alekseev, M. I., & Gilmutdinova, M. A. (2021). Reducing the influence zone of the dispersion discharge. Bulletin of Civil Engineers, (6(89)), pp. 128-134. (In Russian). DOI 10.23968/1999-5571- 2021-18-6-128-134.

16. Bogomolov, A. V., Lepikhin, A. P., Tiunov, A. A., Lyubimova, T. P., & Parshakova, Y. N. (2016). Osobennosti organizatsii rasseivayushchikh vodovypuskov dlya otvedeniya izbytochnykh rassolov v vodnye ob"ekty. Vodnoe khozyaystvo Rossii: problemy, tekhnologii, upravlenie, (2), pp. 72-86. (In Russian).

17. Papakonstantis, I. G., & Papanicolaou, P. N. (2022). On the computational modeling of inclined brine discharges. Fluids, 7, p. 86. Available at: https://www.mdpi.com/2311-5521/7/2/86 (accessed 27.11.2023). (In English). DOI 10.3390/fluids7020086.

18. Hosseini, S. A. R. S., Taherian, M., & Mohammadian, A. (2022). Large eddy simulation of multiple inclined brine discharges. Proceedings of the 39th IAHR World Congress, 19-24 June 2022, Granada, Spain. Available at: https:// iahr.oss-accelerate.aliyuncs.com/upload/file/20220520/1653034138930298.pdf (accessed 30.11.2023). (In English). DOI 10.3850/IAHR-39WC252171192022809.

19. Chow, A. C., Shrivastava, I., Adams, E. E., Al-Rabaie, F., & Al-Anzi, B. (2020). Unconfined dense plunging jets used for brine disposal from desalination plants. Processes, (8), p. 696. Available at: https://www.mdpi.com/2227- 9717/8/6/696 (accessed 25.11.2023). (In English). DOI 10.3390/pr8060696.

20. Mironov, V. V., Chekardovskiy, M. N., Ivanyushin, Yu. A., Shalagin, I. Yu., Maksimov, L. I., & Kalinovskiy, P. A. (2022) Sposob poluchniya presnoy vody [Method for obtaining fresh water]. Patent RU 2780743. МПК Е03В 3/28. Applied: 12.07.2021. Published: 30.09.2022 Patentee: Industrial University of Tyumen. (In Russian).

21. Mironov, V. V., Ivanyushin, Yu. A., Mironov, D. V., & Suglobov, D. A. (2023) Sposob ochistki vody ot soli i zagryazneniy [Method for purifying water from salt and contaminants]. Patent RU 2808201, МПК C02F 1/44 F03B 13/14. Applied: 22.05.2023. Published: 24.11.2023. Patentee: LLC "ELECTRORAM". (In Russian).

22. Al'tshul', A. D., & Kiselev, P. G. (1975). Gidravlika i aerodinamika (Osnovy mekhaniki zhidkosti). 2nd edition, revised. Moscow, Stroyizdat Publ., 323 p. (In Russian).


Review

For citations:


Mironov V.V., Ivanyushin Yu.A., Suglobov D.A., Mironov D.V., Kadyseva A.A., Erofeev E.A. Hydraulic calculation of the pipeline with dispersed discharge of brine into the water area. Architecture, Construction, Transport. 2024;(1):68-78. (In Russ.) https://doi.org/10.31660/2782-232X-2024-1-68-78

Views: 30


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)