Preview

Architecture, Construction, Transport

Advanced search

Construction of buildings and structures on two-phase elastic bases

Abstract

The fundamental Boussinesq solution for a two-phase half-space obtained based on a kinematic model is used to calculate the stress-strain state of the base after the consolidation process. The results are presented for two uniform loads distributed over a circular or rectangular platform, the distance between which can vary. The solution is illustrated by graphs showing the effect of the liquid phase on the stress field and the displacement of the solid phase.

About the Authors

E. R. Trefilina
University of Tyumen
Russian Federation

Elena R. Trefilina, Candidate of Physical and Mathematical Sciences, Associate Professor at the Department of Software and System Engineering

Tyumen



I. A. Trefilin
Saint Petersburg University
Russian Federation

Ivan A. Trefilin, Master’s student at the Department of Cartography and Geoinformatics

Saint Petersburg



References

1. Rubinshtejn, A. Ya., & Kanaev, F. S. (1984). Inzhenerno-geologicheskie izyskaniya dlya stroitel’stva na slabykh gruntakh. Moskow, Stroyizdat Publ., 108 p. (In Russian).

2. Zastrozhnov, A. S., Shkatova, V. K., Minina, E. A., Tarnogradsky, V. D., Krutkina, O. N., Krasotkin, S. I., & Gusev, E. A. (2011). New quaternary map of Russia in the scale 1:2 500 000. Materialy VII Vserossiyskogo soveshchaniya po izucheniyu chetvertichnogo perioda, September 12-17. Apatity, pp. 209-211. (In Russian).

3. Bai, V. F., Nabokov, A. V., Vorontsov, V. V., & Kraev, A. N. (2008). Experimental study of the stressed foundation from the water saturated reinforced loamy soil. Oil and Gas Studies, (1), pp. 102-104. (In Russian).

4. Voroncov, V. V., Ovchinnikov, V. P., & Kulikov, A. V. (2014). Laboratory study results macro-sample of water saturated peat with simulated remote from day surface. Scientific and Technical Volga region Bulletin, (5), pp. 150-154. (In Russian).

5. Tverdokhleb, S. A., & Voroncov, V. V. (2015). Rezul’taty laboratornogo issledovaniya konsolidatsii slabogo vodonasyshchennogo glinistogo makroobraztsa udalennogo ot dnevnoy poverkhnosti. Aktual’’nye problemy arkhitektury, stroitel’’stva, ekologii i energosberezheniya v usloviyakh Zapadnoy Sibiri: materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii, April 23. Tyumen, Tyumen State University of Architecture and Civil Engineering Publ., pp. 64-72. (In Russian).

6. Vorontsov, V. V., Chikishev, V. M., Ogorodnova, J. V., & Lipikhin, A. S. (2014). Experimental studies for weak clayey soil reinforced with geotextile materials under strip loading. Scientific and Technical Volga region Bulletin, (3), pp. 88-93. (In Russian).

7. Maltseva, T. V. (2012). Matematicheskaya teoriya vodonasyshchennogo grunta. Tyumen, Vektor buk Publ., 240 p. (In Russian).

8. Bezukhov, N. I. (1968). Osnovy teorii uprugosti, plastichnosti i polzuchesti. Moskow, Vysshaya Shkola Publ., 512 p. (In Russian).

9. Maltsev, L. Ye., Bai, V. F., & Maltseva, T. V. (2002). Kinematicheskaya model’ grunta i biomaterialov. St. Petersburg, Stroyizdat SPb. Publ., 336 p. (In Russian).

10. Maltseva, T. V., Dorofeev, S. M., & Saltanova, T. V. (2012). Study of the pipeline curved section impact on the water saturated foundation. Oil and Gas Studies, (1), pp. 59-63. (In Russian).

11. Bai, V. F., Maltseva, T. V. Nabokov, A. V., Vorontsov, V. V., & Minaeva, A. V. (2011). Teoreticheskie predposylki rascheta peschanykh armirovannykh massivov v slabykh glinistykh gruntakh. Oil and Gas Studies, (1), pp. 102-106. (In Russian).

12. Maltseva, T. V. Nabokov, A. V., Vorontsov, V. V., Kryzhanivska, T. V., & Minaeva, A.V. (2010). Raschet deformirovannogo sostoyaniya vyazkouprugogo vodonasyshchennogo osnovaniya. Oil and Gas Studies, (4), pp. 94-99. (In Russian).

13. Maltseva, T. V., & Trefilina, E. R. (2004). Modeling of the two-phase body with account of carrying abilities of the fuild phase. Mathematical Models and Computer Simulations, 16(11), pp. 47-57. (In Russian).

14. Maltsev, L. E., Maltseva, T. V., Minayeva, A. V., & Nabokov, A. V. (2012). Definition of displacement reinforcing element sandy cylinder. Scientific and Technical Volga region Bulletin, (2), pp. 234-238. (In Russian).

15. Maltseva, T. V., Nabokov, A. V., & Chernykh, A.V. (2015). Reinforced sand piles for low-rise buildings. Vestnik Tyumenskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta, (2), pp. 34-39. (In Russian).


Review

For citations:


Trefilina E.R., Trefilin I.A. Construction of buildings and structures on two-phase elastic bases. Architecture, Construction, Transport. 2021;(1):20-29. (In Russ.)

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-232X (Print)
ISSN 2713-0770 (Online)