УДК 628.1-047.58:004.94

2.1.4 Водоснабжение, канализация, строительные системы охраны водных ресурсов (технические науки)

ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ ИНЖЕНЕРНЫХ СЕТЕЙ ДЛЯ УСТОЙЧИВОГО ВОДОПОТРЕБЛЕНИЯ

М. Н. Перевалова, Е. Р. Трефилина Тюменский государственный университет, Тюмень, Россия

INFORMATION MODELLING OF ENGINEERING NETWORKS FOR SUSTAINABLE WATER CONSUMPTION

Maria N. Perevalova, Elena R. Trefilina University of Tyumen, Tyumen, Russia

Аннотация. В статье на основе информационного моделирования рассмотрена одна из задач разработки автоматизированного инструмента построения расчетных схем и спецификации материалов к ним для водоснабжения и водоотведения. Описано формирование и программирование расчетного модуля устойчивого водопотребления (построение расчетной схемы в табличном виде).

Ключевые слова: Autodesk AutoCAD, информационное моделирование, автоматизированный инструмент, расчетный модуль

Abstract. The article based on information modelling considers one of the tasks of developing an automated solution for constructing computational schemes and specification materials for them for water supply and disposal – formation and programming of the calculation module of sustainable water consumption (construction of the computational scheme as a table).

Key words: Autodesk AutoCAD, information modeling, automated tool, calculation module

Введение

Строительная индустрия является одной из главных составляющих программы «Цифровая экономика». С 2020 года применение технологий моделирования при проектировании зданий и сооружений является обязательным. ВІМ-технология (Building Information Modeling – информационное моделирование зданий) как инструмент предоставляет проектировщикам

DOI: 10.31660/2782-232X-2021-3-22-29

и разработчикам возможности использования моделирования и автоматизации процессов при работе с проектами.

Анализируя опыт использования ВІМтехнологий в разных странах [1–5], несложно заметить, что технологии информационного моделирования используются на всех стадиях проектирования и эксплуатации зданий. Компьютерный макет включает в себя архитектурностроительную, технологическую, экономическую информацию. Результат – объектно-ориентированная цифровая модель объекта и процесса его строительства. Преимуществом ВІМ-технологии является взаимосвязанность информации всего проекта. Повышение скорости проектирования и управления проектом обеспечивает значительную экономию средств.

Программы компании Autodesk предоставляют возможности не только для архитектурного проектирования, но и для проектирования инженерных систем, расчета и проектирования строительных конструкций, моделирования различных фаз строительства. В частности, AutoCAD обладает широким спектром возможностей, но существуют и узкоспециализированные задачи, которые невозможно решить готовыми средствами программы [6].

Одной из таких задач является разработка автоматизированного инструмента для построения расчетных схем и спецификации материалов к ним для водоснабжения и водоотведения. Такой инструмент способен облегчить трудоемкую работу сотрудникам и сэкономить время, требующееся на подготовку необходимой документации.

Постановка задачи

Использование инструмента автоматизации позволяет достичь большей эффективности по сравнению с традиционными способами построения инженерных сетей водоснабжения. Использование автоматизированного решения не только существенно сокращает сроки подготовки чертежа и документации, но также способствует исключению ошибок, допускаемых при выполнении чертежа вручную.

Требования к функциональным возможностям программируемого инструмента – ввод и

выбор данных о водопотребителях и трубах; отображение введенных данных в виде выноски; создание меток выносок по чертежу; изменение положения выносок (поворот, отображение); возможность использования указанных данных в расчетах; построение расчетных схем в табличном виде; удаление выноски с пересчетом в расчетной схеме; изменение введенных данных с пересчетом в расчетной схеме; изменение данных из СНиП СП 30.13330.2012 Внутренний водопровод и канализация зданий¹; построение спецификации на основе чертежа с расставленными динамическими блоками по ГОСТ 21.110-2013 СПДС. Спецификация оборудования, изделий и материалов².

Далее рассмотрим одну из задач разработки автоматизированного инструмента построения расчетных схем и спецификации материалов к ним для водоснабжения и водоотведения – формирование и программирование расчетного модуля устойчивого водопотребления (построение расчетной схемы в табличном виде).

Входными являются данные, введенные в созданном диалоговом окне, а также табличные данные о водопотребителях, взятые из СНиП. К выходным данным относятся выноски, отображающие введенную информацию в диалоговом окне, расчетные схемы в табличном виде.

Расчетные схемы должны содержать информацию о количестве потребителей и санитарнотехнических приборах; норме расхода воды в л/с, л/ч, л/сут; значении коэффициента альфа для секундного и часового расхода воды, потерях напора на участке и других характеристиках².

При выявленной проблеме отсутствия допустимых команд для создания узкоспецифических функций, таких как формирование расчетной схемы, возникает необходимость вносить изме-

¹СП 30.13330.2012. Внутренний водопровод и канализация зданий = Domestic water supply and drainage systems in buildings: свод правил: издание официальное: утвержден Приказом Министерства регионального развития Российской Федерации (Минрегион России) от 29 декабря 2011 г. № 626: дата введения 2013-01-01. – Москва, 2012. – 65 с. – Текст: непосредственный.

 $^{^2}$ ГОСТ 21.110-2013 Система проектной документации для строительства. Спецификация оборудования, изделий и материалов = System of design documents for construction. Specification of equipment, products and materials: межгосударственный стандарт: издание официальное: утвержден Межгосударственным Советом по стандартизации, метрологии и сертификации (МГС) (протокол от 14 ноября 2013 г. № 44): дата введения 2015-01-01 / разработан ОАО ЦНС. – Москва: Стандартинформ, 2019. – 7 с. – Текст: непосредственный.

CTPOUTEЛЬCTBO/CONSTRUCTION

нения в существующую структуру AutoCAD. Сделать это можно при помощи следующих языков: C++, AutoLisp, Visual Basic for Application (VBA). В качестве средства разработки инструмента был выбран язык AutoLisp, который позволяет работать с данными чертежами AutoCAD; использовать переменные и выражения при программировании команд AutoCAD; работать с внешними файлами [7].

Результаты/обсуждение

Системы водоснабжения и канализации должны обеспечивать подачу воды и отведение сточных вод (расход) в соответствии с расчетным числом водопотребителей или установленными санитарно-техническими приборами.

При проектировании гидравлического расчета, выбора оборудования, расчета тепловых нагрузок для приготовления горячей воды, составлении баланса водопотребления и водоотведения должны быть определены расчетные расходы воды, скорость напора и потери сопротивления на участке. Это необходимо для того, чтобы правильно подобрать диаметр трубы, что важно для обеспечения подачи одинакового напора по этажам.

В процессе разработки инструмента использованы формулы для секундного расхода воды:

$$q_0 = \frac{\sum_{1}^{i} N_i P_i q_{0i}}{\sum_{1}^{i} N_i P_i},$$

где P_i – вероятность действия санитарно-технических приборов на участках сети при одинаковых водопотребителях в здании (сооружении):

$$P = \frac{q_{hr_{,u}} \cdot U}{3600 \cdot q_0 \cdot N} \cdot$$

По соответствующим формулам рассчитаны максимальный секундный расход воды на расчетном участке сети, л/с; максимальный часовой расход воды для здания; часовые расходы воды отдельным прибором для здания в целом, л/ч.

Получен суточный расход воды на хозяйственно-питьевые нужды здания в целом (м³/сут). Он определяется формулой:

$$Q = \frac{\sum_{1}^{i} q_{u_{i}m_{i}i} \cdot U_{i}}{1000},$$

где $q_{u,m}$ – норма расхода воды в сутки со средним за год водопотреблением, л, взятая из СНиП СП 30.13330.2012, и скорость напора воды, м/с:

$$V = \frac{4 \cdot q}{\pi \cdot d^2},$$

где q – максимальный секундный расход воды для здания, л/с; d – диаметр трубы, м.

Подробнее остановимся на расчете гидравлического уклона, который характеризует потерю напора на единицу длины русла.

Расчетная формула зависит от типа и состояния выбранной трубы.

Гидравлический уклон для стальных труб:

$$i = \lambda \cdot \frac{v^2}{2g \cdot d},$$

где λ – коэффициент сопротивления трения по длине; v – скорость, м/с; d – диаметр трубы, м. g=9.8 – ускорение свободного падения, м/с².

Коэффициент сопротивления трения по длине λ определяется формулами в зависимости от состояния трубы.

Для новых стальных труб:

$$\lambda = \frac{0.312}{d^{0.226}} \cdot \left(1.9 \cdot 10^{-6} + \frac{u}{v} \right)^{0.226}.$$

Для неновых стальных труб при $\frac{v}{u} \ge 9, 2 \cdot 10^5$, 1/м:

$$\lambda = \frac{0.021}{d^{0.3}}$$

Для неновых стальных труб при $\frac{v}{u} < 9.2 \cdot 10^{5}$, 1/м:

$$\lambda = \frac{1}{d^{0,3}} \cdot \left(1, 5 \cdot 10^{-6} + \frac{u}{v} \right)^{0,3},$$

где $u=1,3\cdot 10^{-6}$ – кинематический коэффициент вязкости воды, м²/с.

Гидравлический уклон для чугунных труб определяется следующим образом.

Для новых чугунных труб:

$$\lambda = \frac{0.0144}{d^{0.284}} \cdot \left(1 + \frac{2.36}{v}\right)^{0.284}.$$

Для неновых чугунных труб при $v \ge 1,2$, м/с:

$$i = 0.00107 \cdot \frac{v^2}{d^{1.3}}.$$

Гидравлический уклон для асбестоцементных, пластмассовых, железобетонных и стеклянных труб определяется следующими ниже формулами.

Для асбестоцементных:

$$i = 0,000561 \cdot \frac{v^2}{d^{1,190}} \cdot \left(1 + \frac{3,51}{v}\right)^{0,19}$$

Для пластмассовых:

$$i = 0,000685 \cdot \frac{v^{1,774}}{d^{1,226}}$$
.

Для железобетонных:

$$i = 0.000802 \cdot \frac{v^2}{d^{1,190}} \cdot \left(1 + \frac{3.51}{v}\right)^{0,19}$$

Для стеклянных:

$$i = 0.000745 \cdot \frac{v^{1,774}}{d^{1,226}} \cdot$$

Потери напора на участках трубопроводов, м:

$$\mathbf{H} = i \cdot l \cdot (1 + k_1),$$

где i – гидравлический уклон, l – длина участка, k_1 – коэффициент, который выбирается в зависимости от сети водоснабжения и принимается равным одному из следующих значений: 0,3; 0,2; 0,15; 0,1 [8].

Для расчета секундного, часового и суточного расхода воды были использованы формулы, взятые из СНиП. Формулы для расчета гидравлического уклона – из справочного пособия Ф. А. Шевелева [8].

В проектировании зданий существует такое понятие, как транзитный участок, т. е. участок, который не производит и не потребляет транспортируемых жидкостей. Для его расчета используется количество потребителей и количество приборов, учтенных на всех ранее рассчитанных участках.

После того, как были найдены необходимые значения, программным способом формируется расчетный модуль в виде таблицы. Формирование расчетного модуля проведено с использованием расширения языка AutoLISP – ActiveX [9].

Фрагмент блок-схемы программы расчетной части приведен на рис. 1, расчетный модуль в виде таблицы на рис. 2.

Выводы

Описанный в статье инструмент был разработан по заказу ООО «Гармония+», которое, как и большинство архитектурных компаний и бюро, осуществляет существенную часть своей деятельности в программе Autodesk AutoCAD. На момент начала сотрудничества специалисты компании вели расчеты в программе MS Excel, что неудобно и трудоемко, т. к. параллельно ведется работа со СНиП для выбора табличных значений из документа.

Разработанный инструмент (автоматизированное решение) позволил инженерам компании существенно сократить временные затраты на создание, корректировку и расчеты показателей чертежа.

На текущий момент изменения, вносимые в данные, автоматически пересчитываются и находят свое отображение в чертежах.

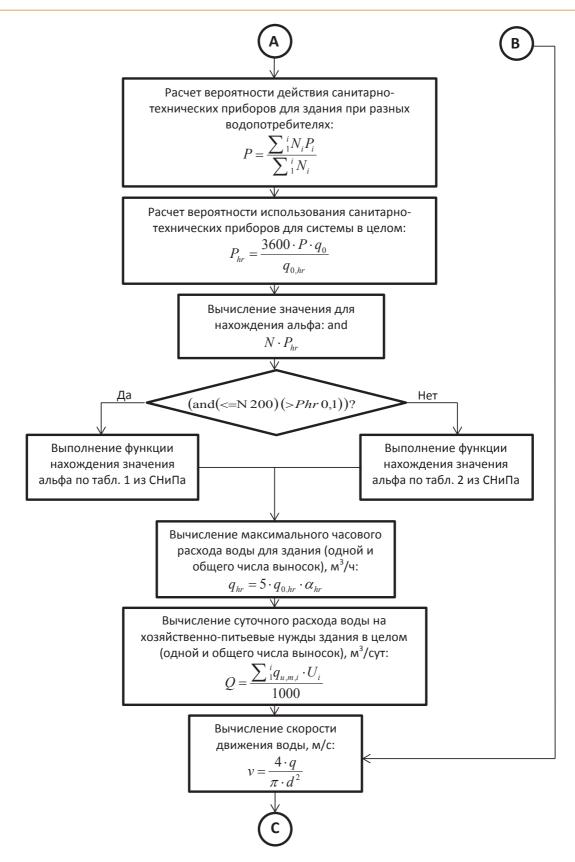


Рис. 1. Фрагмент блок-схемы расчетного модуля

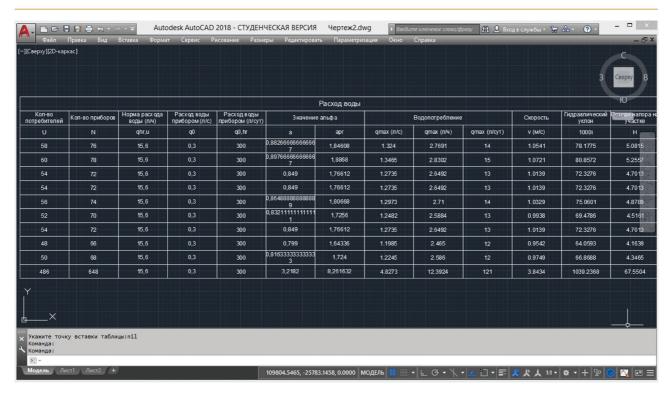


Рис. 2. Расчетный модуль

Библиографический список

- 1. Mikayelyan, Z. Interaction of Autodesk Revit and IES VE Software Suites in Building Information Modeling / Z. Mikayelyan, D. Sirunyan. DOI: 10.23968/BIMAC.2020.003. Текст: непосредственный // ВІМ in Construction & Architecture: Материалы III Международной научно-практической конференции, Санкт-Петербург, 15-17 апреля 2020 года. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, 2020. Р. 28–33.
- 2. Ngoc, N. M. Using Pipe Flow Expert Software in Combination with BIM / Revit to Design Water Supply Systems for Buildings / N. M. Ngoc, B. H. Phong. DOI: 10.23968/BIMAC.2020.004. Текст: непосредственный // BIM in Construction & Architecture: Материалы III Международной научно-практической конференции, Санкт-Петербург, 15–17 апреля 2020 года. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, 2020. Р. 33–50.
- 3. Шакшак, О. М. Многофункциональное VR-приложение на основе цифровой модели здания / О. М. Шакшак, И. А. Евсиков. Текст : непосредственный // Архитектон : известия вузов. 2019. № 4 (68). С. 18.
- 4. Гурьева, Ю. А. ВІМ-технологии в строительном комплексе : зарубежный и отечественный опыт / Ю. А. Гурьева. DOI: 10.23968/ВІМАС.2020.006. Текст : непосредственный // ВІМ-моделирование в задачах строительства и архитектуры : Материалы III Международной научно-практической конференции, Санкт-Петербург, 15–17 апреля 2020 года. Санкт-Петербург : Санкт-Петербургский государственный архитектурно-строительный университет, 2020. С. 60–68.
- 5. Семенов, А. А. Обучение ВІМ в университете: необходимые технологии / А. А. Семенов. DOI: 10.23968/ВІМАС.2019.041. Текст: непосредственный // ВІМ-моделирование в задачах строительства и архитектуры: Материалы ІІІ Международной научно-практической конференции, Санкт-Петербург, 15–17 апреля 2020 года. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, 2020. С. 223–227.

CTPOUTEЛЬCTBO/CONSTRUCTION

- 6. Габидулин, В. М. Адаптация AutoCAD под стандарты предприятия / В. М. Габидулин. Москва : ДМК Пресс, 2013. 208 с. Текст : непосредственный.
- 7. Полещук, Н. Н. Программирование для AutoCAD 2013-2015 / Н. Н. Полещук. Москва : ДМК Пресс, 2015. 462 с. Текст : непосредственный.
- 8. Шевелев, Ф. А. Таблицы для гидравлического расчета стальных, чугунных, асбестоцементных, пластмассовых и стеклянных водопроводных труб: справочное пособие / Ф. А. Шевелев. 5-е изд. доп. Москва: Стройиздат, 1973. 113 с. Текст: непосредственный.
- 9. Уроки AutoCAD. Программирование в AutoCAD. AutoLISP / AutoCAD : [сайт]. URL : https://acad-prog.ru/. Текст : электронный (дата обращения : 20.08.2021).

References

- 1. Mikayelyan, Z., & Sirunyan, D. (2020). Interaction of Autodesk Revit and IES VE Software Suites in Building Information Modeling. BIM in Construction & Architecture, April 15-17. Saint Petersburg, Saint Petersburg State University of Architecture and Civil Engineering Publ., pp. 28-33. (In English). DOI: 10.23968/BIMAC.2020.003
- 2. Ngoc, N. M., & Phong, B. H. (2020). Using Pipe Flow Expert Software in Combination with BIM / Revit to Design Water Supply Systems for Buildings. BIM in Construction & Architecture, April 15-17. Saint Petersburg, Saint Petersburg State University of Architecture and Civil Engineering Publ., pp. 33-50. (In English). DOI: 10.23968/BIMAC.2020.004
- 3. Shakshak, O. M., & Evsikov, I. A. (2019). Multifunctional VR application based on digital building model. Architecton: Proceedings of Higher Education, 4(68), P. 18. (In Russian).
- 4. Guryeva, Yu. A. (2020). BIM technologies in the construction industry: foreign and domestic experience. BIM in Construction & Architecture, April 15-17. Saint Petersburg, Saint Petersburg State University of Architecture and Civil Engineering Publ., pp. 60-68. (In Russian). DOI: 10.23968/BIMAC.2020.006
- 5. Semenov, A. A. (2020). Training BIM at the university: necessary technologies. BIM in Construction & Architecture, April 15-17. Saint Petersburg, Saint Petersburg State University of Architecture and Civil Engineering Publ., pp. 223-227. (In Russian). DOI: 10.23968/BIMAC.2019.041
- 6. Gabidulin, V. M. (2013). Adaptatsiya AutoCAD pod standarty predpriyatiya. Moscow, DMK Press Publ., 208 p. (In Russian).
- 7. Poleshchuk, N. N. (2015). Programmirovanie dlya AutoCAD 2013-2015. Moscow, DMK Press Publ., 462 p. (In Russian).
- 8. Shevelev, F. A. (1973). Tablitsy dlya gidravlicheskogo rascheta ctal'nykh, chugunnykh, asbestotsementnykh, plastmassovykh i steklyannykh vodoprovodnykh trub. 5th edition, revised. Moscow, Stroyizdat Publ., 113 p. (In Russian).
- 9. Uroki AutoCAD. Programmirovanie v AutoCAD. AutoLISP. AutoCAD. (In Russian). Available at: https://acad-prog.ru/ (date of the application: 20.08.2021).

Сведения об авторах

Перевалова Мария Николаевна, старший преподаватель кафедры алгебры и математической логики, Тюменский государственный университет, e-mail: m.n.perevalova@utmn.ru

Трефилина Елена Рудольфовна, к. ф.-м. н., доцент кафедры программной и системной инженерии, Тюменский государственный университет, e-mail: e.r.trefilina@utmn.ru

Information about the authors

Maria N. Perevalova, Senior lecturer at the Department of Algebra and Mathematical Logic, University of Tyumen, e-mail: m.n.perevalova@utmn.ru

Elena R. Trefilina, Candidate of Physical and Mathematical Sciences, Associate Professor at the Department of Software and System Engineering, University of Tyumen, e-mail: e.r.trefilina@utmn.ru **Для цитирования:** Перевалова, М. Н. Информационное моделирование инженерных сетей для устойчивого водопотребления / М. Н. Перевалова, Е. Р. Трефилина. – DOI: 10.31660/2782-232X-2021-3-22-29. – Текст: непосредственный // Архитектура, строительство, транспорт. – 2021. – № 3. – С. 22–29.

For citation: Perevalova, M. N., & Trefilina, E. R. (2021). Information modelling of engineering networks for sustainable water consumption. Arkhitektura, stroitel'stvo, transport [Architecture, construction, transport], (3), pp. 22-29. (In Russian). DOI: 10.31660/2782-232X-2021-3-22-29.